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Abstract

To obtain actionable information for humanitarian and other emergency responses,
an accurate classification of news or events is critical. Daily news and social media are
hard to classify based on conveyed information, especially when multiple categories
of information are embedded. This research used large language models (LLMs) and
traditional transformer-based models, such as BERT, to classify news and social media
events using the example of the Sudan Conflict. A systematic evaluation framework
was introduced to test GPT models using Zero-Shot prompting, Retrieval-Augmented
Generation (RAG), and RAG with In-Context Learning (ICL) against standard and
hyperparameter-tuned bert-based and bert-large models. BERT outperformed GPT in F1-
score and accuracy for multi-label classification (MLC) while GPT outperformed BERT
in accuracy for Single-Label classification from Multi-Label Ground Truth (SL-MLG).
The results illustrate that a larger model size improves classification accuracy for both
BERT and GPT, while BERT benefits from hyperparameter tuning and GPT benefits
from its enhanced contextual comprehension capabilities. By addressing challenges
such as overlapping semantic categories, task-specific adaptation, and a limited dataset,
this study provides a deeper understanding of LLMs’ applicability in constrained, real-
world scenarios, particularly in highlighting the potential for integrating NLP with other
applications such as GIS in future conflict analyses.

Keywords: large language models; transformers; generative AI; BERT; GPT; NLP; RAG;
war conflict; humanitarian crisis

1. Introduction
The massive influx of media news, particularly for dynamic and fast-evolving situa-

tions such as armed conflicts, presents a significant obstacle for conflict analysts who must
quickly comprehend, classify, and extract actionable information for intelligence. Manual
classification is not only time-consuming but could also be impractical, given the limited
timeframe and available resources during crisis situations.
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Effectively classifying news content is vital for multiple applications, including conflict
monitoring, humanitarian aid, and timely decision-making by policymakers. Accurate
classification supports high-quality information retrieval, while efficient methods can
enhance processing speed, both of which are essential for timely and informed responses
to emergency events. However, news classification is inherently challenging, given the
complexities of language, the presence of overlapping semantic categories, and the frequent
occurrence of ambiguous or incomplete information in media data [1].

The rapid growth in digital media has intensified the challenges associated with effec-
tively classifying news content. Traditional news classification methods, including machine
learning and early deep learning architectures, have evolved significantly. Transformer-
based models such as BERT and GPT offer advanced capabilities by capturing nuanced
contextual information more effectively [2–4].

In natural language processing (NLP), classification plays a critical role in orga-
nizing, analyzing, and deriving insights from unstructured text data, a task that has
become increasingly challenging due to the rapid expansion of digital media and the
sheer volume of news articles published daily [5–9]. Given the technological evolution
and the complexities in conflict-related news classification, this study evaluated and com-
pared the effectiveness of state-of-the-art NLP approaches, specifically BERT and GPT, in
classifying conflict-related articles related to the Sudan Conflict. This research included
testing different methodologies, such as Zero-Shot prompting, Retrieval-Augmented
Generation (RAG), and RAG with In-Context Learning (ICL) for GPT models, alongside
both base and large versions of BERT, each evaluated in standard and hyperparameter-
tuned configurations, to identify the optimal approach for Single-Label classification
from Multi-Label Ground Truth (SL-MLG) and Multi-Label Classification (MLC). By sys-
tematically assessing these methods, this study provides insights into their applicability,
reliability, and limitations, ultimately informing the best practices for applying NLP-
based classification methods to media news classification in rapidly evolving conflicts
and other scenarios.

Humanitarian responders and crisis managers rely on rapid, accurate classification
of news incidents to allocate aid, coordinate evacuations, and minimize casualties. Mis-
labeling or delays can misdirect resources and jeopardize lives. While prior research has
demonstrated how transformer-based models like BERT or GPT perform well in standard
news classification tasks [10–13], existing studies often assume clean, balanced datasets
and focus on structured or routine topics. For example, Sufi [10] discussed mathematical
models for AI-based news analytics, and Chen et al. [11] applied BERT-CNN hybrids for
long-text news classification. However, crisis news reporting poses distinct challenges,
including fast-changing events, ambiguous wording, overlapping categories, and sensitive
content. Conflict-related datasets are often small, highly imbalanced, and require expert
annotation, which is time-consuming and resource-intensive. To address this gap, we sys-
tematically compared BERT and GPT in crisis news classification within these real-world
constraints, using the Sudan Conflict as an example and analyzed how different prompting
and retrieval strategies affect their classification performance.

2. Related Work
2.1. Text Classification in NLP

Text classification is a fundamental task in NLP that involves assigning textual data to
predefined labels or categories based on its content. It serves as a critical component in various
applications, including sentiment analysis, spam detection, topic classification, and document
classification. These applications rely on accurate classification to support efficient information
retrieval and enable automated decision-making [14–17]. Researchers have developed a range
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of approaches for text classification, evolving from rule-based methods and statistical models
to machine learning (ML) and deep learning techniques [6,18].

Early text classification models relied on traditional ML algorithms, such as Naïve
Bayes, Support Vector Machines (SVM), and Random Forest, which leveraged handcrafted
features like term frequency-inverse document frequency (TF-IDF) and n-grams to rep-
resent text [19,20]. While these approaches demonstrated reasonable performance in
structured datasets, they struggled with capturing the complex semantic and syntactic
structures of natural language. To address these limitations, deep learning (DL) models
emerged as a more effective solution, significantly improving text classification accuracy
by automatically learning hierarchical features from raw text.

Among the early DL approaches, Convolutional Neural Networks (CNNs) were
widely adopted for text classification due to their ability to capture local patterns and word
dependencies through convolutional filters [21,22]. CNN-based models performed well in
tasks requiring sentiment analysis and short-text classification but were limited in handling
long-range dependencies due to their fixed-size receptive fields. Meanwhile, Recurrent
Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM) networks, be-
came popular for their ability to model sequential dependencies and effectively handle text
inputs of varying lengths, such as short phrases or long documents [23]. LSTM demon-
strated superior performance in capturing word order and contextual relationships, making
it effective for tasks like document classification and named entity recognition [24]. How-
ever, both CNNs and LSTMs suffered from inefficiencies when dealing with long-range
dependencies and were computationally expensive due to their sequential nature.

A significant breakthrough in NLP came with the introduction of the Transformer
architecture by Vaswani et al. [25], which revolutionized text classification by addressing
the shortcomings of RNN-based models. Transformer’s self-attention mechanism enabled
it to capture long-range dependencies more effectively by processing all tokens in parallel,
rather than sequentially. This architectural innovation significantly improved performance
across various NLP tasks, including machine translation, text classification, and question
answering [26,27].

Building upon the Transformer framework, BERT [2] and GPT [3] emerged as state-
of-the-art models for text classification and other NLP applications. BERT introduced
a bidirectional training approach, enabling a deeper contextual understanding of text,
while GPT leveraged autoregressive pretraining to generate coherent and contextually
relevant outputs. These models set new benchmarks for text classification by surpassing
previous DL methods in accuracy and adaptability across various domains [28]. The
evolution of text classification methods—from traditional statistical models to DL and
Transformer-based architectures—has reshaped how textual data is analyzed and classified.
While earlier approaches like CNNs and LSTMs laid the foundation for deep learning in
NLP, Transformer-based models have achieved unprecedented performance by capturing
complex contextual dependencies with greater efficiency. However, despite the success of
Transformer-based models like BERT and GPT, several challenges remain, particularly in
classifying texts with overlapping semantic categories, interpreting specialized terminology,
and adapting to domains with limited annotated data.

This study addresses these limitations by evaluating how BERT and GPT models per-
form in conflict-related news scenarios, emphasizing nuanced label selection and context-
sensitive adaptation, as illustrated by the Sudan Conflict case study.

2.2. Text Classification by BERT

BERT has significantly advanced text classification by introducing a novel bidirectional
training approach that captures linguistic context more effectively than its predecessors.
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Unlike earlier models that relied on unidirectional context processing, BERT simultaneously
considers both preceding and succeeding tokens within a sequence, allowing for a richer
understanding of the semantics and syntax [2]. This bidirectional framework enables
BERT to disambiguate meaning, recognize contextual nuances, and enhance classification
accuracy, making it highly effective for complex NLP tasks [29,30].

The ability to capture subtle semantic and syntactic relationships has positioned BERT
as a powerful tool for a wide range of domain-specific text classification applications. In
legal document analysis, BERT has been employed to classify case laws, contracts, and reg-
ulatory texts with high precision, reducing the need for manual annotation [31]. Similarly,
in sentiment analysis, BERT effectively distinguishes nuanced opinions in product re-
views, social media posts, and customer feedback, outperforming traditional deep learning
models [32]. In news classification, BERT has been widely used to classify articles based on
themes such as politics, finance, and global conflicts, demonstrating its adaptability across
diverse textual datasets [33]. For instance, Chen [34] highlighted how BERT modeling
achieves robust accuracy for classifying concise and ambiguous news headlines, show-
casing its effectiveness even for short-form news contexts. Bedretdin [35] demonstrated
that augmenting BERT with topic models and structural features can further improve
classification performance in multi-class media research, a strategy relevant for complex
crisis news datasets.

Comparative studies have shown that BERT consistently achieves higher accuracy
scores than traditional machine learning and deep learning models. For instance, research
indicates that BERT outperforms Multilayer Perceptrons (MLPs), LSTM networks, CNNs,
and even other Transformer-based models like RoBERTa in multi-class text classification
tasks [36,37]. Its pre-training on large-scale corpora, followed by domain-specific fine-
tuning, allows BERT to generalize well while also being adaptable to specialized tasks.
However, BERT’s performance can be limited when training data is scarce or when dealing
with overlapping semantic categories. This research explored these limitations through
comparative evaluations with GPT-based approaches.

2.3. Text Classification by GPT

GPT represents another significant advancement in NLP, extending the capabilities
of the Transformer architecture by adopting an autoregressive learning approach. Unlike
BERT, which relies on bidirectional training to understand both preceding and succeeding
tokens in a sequence, GPT processes text in a unidirectional manner, predicting the next
word based solely on previous tokens [3]. This autoregressive approach makes GPT
particularly well-suited for text generation tasks, enabling it to excel in text completion,
summarization, dialogue systems, and creative writing applications [38,39].

One of GPT’s major strengths in text classification lies in its ability to perform tasks
with minimal task-specific training. Unlike BERT, which typically requires fine-tuning on
large number of labeled datasets for domain-specific classification, GPT leverages few-shot
and zero-shot learning to classify text based on structured prompts [40,41]. This charac-
teristic enables GPT to generalize across multiple domains without extensive retraining,
making it particularly useful in low-resource environments where annotated training data
is limited. Additionally, GPT’s prompt engineering capabilities allow users to dynami-
cally guide the model’s classification behavior, reducing the dependency on traditional
fine-tuning methods [12].

However, while GPT offers greater flexibility and adaptability, its autoregressive nature
introduces inherent limitations compared to BERT. Since GPT processes text sequentially, it
lacks BERT’s full bidirectional context, which can be crucial for understanding nuanced
relationships between words in complex classification tasks. As a result, BERT often
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outperforms GPT in domain-specific classification, particularly in scenarios where fine-
grained contextual understanding is essential [42]. Moreover, GPT’s output variability,
which makes it effective in generative tasks, can introduce inconsistencies in classification
performance, requiring additional prompt tuning to maintain accuracy and reliability
across different datasets [28].

2.4. Current Problems and Contributions

In summary, despite significant advancements in text classification through models
like BERT and GPT, several problems persist, particularly in handling MLC, low-resource
datasets, and classification consistency. Traditional supervised classification approaches
require a large amount of annotated training datasets, which are often unavailable for
specific domains. While BERT improves classification accuracy through bidirectional
context modeling, it demands extensive fine-tuning and computational resources. On the
other hand, GPT’s zero-shot and few-shot learning capabilities offer adaptability but may
generate inconsistent outputs, making it less reliable for structured classification tasks.

These problems become more pronounced in complex conflict-related articles. For
example, MLC is required to classify articles into multiple categories (e.g., war crimes, hu-
manitarian crises, and military operations), yet existing models struggle with overlapping
categories and imbalanced datasets. The effectiveness of classification is further influenced
by data constraints, ambiguous text, and entity overlaps, which complicate model training
and evaluation. This research explored and optimized LLM-based classification techniques,
focusing on prompt-based strategies with GPT and both standard and hyperparameter-
tuned versions of BERT. By systematically comparing GPT’s prompt-based methods against
BERT’s hyperparameter-tuned classification, the study evaluated approaches for improving
classification performance.

3. Data Sources
A total of 423 articles (such as in Table 1) related to the Sudan Conflict, covering January

2024 to November 2024, were selected and analyzed by multiple Sudan Conflict experts as
the ground truth. The annotated dataset covered 17 categories including military operations,
damage or destruction of civilian critical infrastructure, willful killing of civilians, etc.
(detailed in Table 2).

Table 1. The structure of the incident dataset and an example of an incident.

Attribute Example

Date 27 September 2024

Incident Narrative

On September 27, continued fierce fighting between the two warring parties and
their supporters for the control of El Fasher, North Darfur. Radio Dabanga reported
that 19 people were killed and dozens injured by continued RSF artillery shelling on

the city. The El Fasher livestock market was also reported hit by bombing.
Ground Truth Labels Military operations (battle, shelling), Indiscriminate use of weapons

Table 2. Category definitions for conflict-related incidents.

Category Definition

Unlawful detention
Refers to the act of detaining or confining an individual without legal justification or due process. For

example, if protesters are arrested and detained without any legal basis during peaceful demonstrations
with no access to legal representation, this would be considered unlawful detention.

Human trafficking

Refers to the act of recruiting, transporting, transferring, harboring, or receiving individuals through
force, fraud, coercion, or other forms of deception for the purpose of exploitation. Exploitation can take
many forms, including forced labor, sexual exploitation, slavery, servitude, or the removal of organs. It is

considered a severe violation of human rights and is illegal under international and domestic laws.

Enslavement
Refers to the act of exercising ownership or control over another person, treating them as property, and
depriving them of their freedom. It often involves forcing individuals to perform labor or services under

coercion, violence, or the threat of punishment.
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Table 2. Cont.

Category Definition

Willful killing of civilians

Refers to the intentional killing of civilians who are not directly participating in hostilities, with full
knowledge of their noncombatant status. This includes acts like massacres, executions, or deliberate

bombings of civilian sites such as homes, schools, or hospitals, where the clear intent is to cause death.
For example, a military unit massacring the residents of a village.

Mass execution
Refers to the deliberate killing of a large number of individuals, often carried out by state or non-state actors
as part of systematic persecution, acts of war, or punitive measures. The victims are typically selected based

on political, ethnic, religious, or social affiliations, and the killings are often premeditated and organized.

Kidnapping
Refers to the unlawful and intentional abduction, confinement, or holding of an individual against their
will, often for a specific purpose such as extortion, ransom, political leverage, forced labor, or exploitation.

It is a serious crime and violates the individual’s right to freedom and security.

Extrajudicial killing Refers to the killing of a person without any legal process, such as arrest, trial, or sentencing. It is carried
out outside the law, often by state agents or with their approval.

Forced disappearance
Refers to the act of abducting or detaining a person against their will, followed by a refusal to disclose

their fate or whereabouts. This leaves the victim outside the protection of the law and often causes
anguish to their family and community.

Damage or destruction of civilian
critical infrastructure

Refers to the reckless harm, sabotage, or destruction of essential facilities, systems, or services necessary
for the well-being, safety, and survival of civilian populations. This includes infrastructure such as

hospitals, water supplies, power grids, schools, transportation systems, and communication networks.

Damage or destruction, looting, or
theft of cultural heritage

Refers to the harm, removal, or appropriation of culturally significant sites, objects, or artifacts during
conflicts, disasters, or other destabilizing events. These acts violate international laws that protect cultural
heritage as part of humanity’s shared history and identity. This category also includes looting incidents.

Military operations (battle, shelling)

Refers to actions explicitly conducted between opposing armed forces, such as the RSF and SAF, during
a conflict or war. These actions involve the use of weapons, strategies, and tactics to achieve military

objectives, focusing on direct engagements or operations targeting enemy positions. Narratives
mentioning attacks on civilian areas or indiscriminate shelling are not included in this category, even if

long-range weapons or artillery are used.

Gender-based or other conflict-related
sexual violence

Refers to acts of sexual violence committed during or as a result of armed conflict, often targeting
individuals based on their gender, identity, or perceived vulnerability. Incidents such as rape or sexual

harassment are considered gender-based or other conflict-related sexual violence.
Violent crackdowns on protesters/

opponents/civil rights abuse
Refers to the use of excessive or unlawful force to suppress dissent, silence opposition. These acts often

involve targeting individuals or groups engaging in protests, political opposition, or advocacy for civil rights.

Indiscriminate use of weapons

Refers to the use of weapons, such as shelling or bombing in a manner that impacts buildings,
neighborhoods, or areas without clear differentiation between combatants and civilians, or military and

civilian infrastructure. This category applies only to incidents involving the use of explosives or
long-range weapons that cause widespread harm or destruction, regardless of whether brute force or

a massacre is involved, unless explicitly mentioned.

Torture or indications of torture Refers to the infliction of severe physical or psychological pain and suffering on a person, typically to
punish, intimidate, extract information, or coerce.

Persecution based on political, racial,
ethnic, gender, or sexual orientation

Refers to the systematic mistreatment, harassment, or oppression of individuals or groups due to their
political beliefs, race, ethnicity, gender identity, or sexual orientation.

Movement of military, paramilitary, or
other troops and equipment

Refers to the deployment, transfer, or relocation of armed forces, armed groups, or their equipment as
part of strategic or operational objectives. This movement may occur during preparation for conflict,

active military operations, or in maintaining a presence in certain areas.

Each article was labeled as one or more categories based on its content. To ensure
consistency and accuracy, the labels were cross-verified by multiple experts. Given the
overlapping nature of certain categories, challenges arose in distinguishing between similar
classifications. To address this, detailed category definitions were developed by the Sudan
Conflict experts who were also responsible for the labeling. These guidelines provided an-
notators with clear decision-making criteria, minimizing ambiguity and ensuring uniform
interpretation of classification rules across all annotated articles.

Table 1 presents the data structure and an example of an incident. The cell “Incident
Narrative” was put into the various open-source LLMs, and the ‘Ground Truth’ field was
used to verify and validate the outputs of the LLMs.

Table 2 outlines each category and its corresponding definition, which was also used in
the prompts for the RAG-ICL approach, where definitions guide classification via retrieved
in-context examples.

The dataset was partitioned into training (90%) and testing (10%) subsets, with an
additional 85/15 validation split within the training portion. Table 3 summarizes the
distribution of articles across incident categories for the training, validation, and test sets,
highlighting the dataset’s constrained size and pronounced class imbalance.
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Table 3. Number of articles per incident category and dataset split. “Total Occurrences” are the sum
of the category assignments; “Total Rows” are the number of unique articles per split.

Category Train Validation Test

Unlawful Detention 7 4 7
Human trafficking 0 0 0

Enslavement 1 0 0
Willful killing of civilians 138 24 21

Mass execution 14 2 1
Kidnapping 19 2 3

Extrajudicial killing 42 5 4
Forced disappearance 13 1 1

Damage/destruction of civilian infrastructure 78 12 9
Damage/destruction/looting of cultural heritage 5 1 1

Military operations (battle, shelling) 193 37 27
Gender-based or other conflict-related sexual violence 3 0 0

Violent crackdowns on protesters/opponents 25 6 6
Indiscriminate use of weapons 75 16 8
Torture or indications of torture 15 3 1

Persecution (political, racial, etc.) 6 1 1
Movement of military/equipment 11 1 0

Total Occurrences 645 115 90
Total Rows 323 57 43

4. Methodologies
This study evaluated the text classification performance of two classification frame-

works (Figure 1): SL-MLG and MLC. The experiment setup involved testing GPT and BERT
models under multiple configurations to assess their ability to classify news articles related
to the Sudan Conflict.

Figure 1. Workflow diagram for comparative evaluation of BERT and GPT in SL-MLG and MLC.

For SL-MLG, both models are prompted to choose a single label that best fits the article.
If the selected label appears among the expert-assigned labels, it is considered correct. This
approach simplifies evaluation while still using multiple labels as the ground truth. In
contrast, the MLC framework allows models to assign one or more relevant categories
to each article, capturing the complexity of real-world reporting where news often spans
multiple categories. The GPT and BERT models were tested across both frameworks to
compare their classification performance on Sudan Conflict articles.

The BERT models were evaluated in two settings: one using default hyperparameters
and another with hyperparameter tuning to optimize classification accuracy. The GPT
models, on the other hand, were tested under three strategies: Zero-Shot learning, RAG
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without category definitions, and RAG with ICL, with expert-defined category descriptions
provided. These configurations allowed for a comparative analysis of model adaptability
and classification efficiency under different learning conditions.

For SL-MLG, classification performance was measured using accuracy alone, while for
MLC, it was evaluated using accuracy, precision, recall, and F1-score. By systematically an-
alyzing these models across different setups, this study aimed to identify the best approach
for classifying news into single and multiple categories.

4.1. Methods
4.1.1. BERT

To maintain a focused comparison between BERT and GPT, encoder types such as
XLM-RoBERTa and DeBERTa were not included, as this study was centered on com-
paring the traditional BERT variants and GPT models. The chosen BERT classification
framework was implemented for both MLC and Single-Label Classification from SL-MLG
using two configurations: a standard BERT model with default hyperparameters and
a hyperparameter-tuned model optimized via Optuna [43]. Both configurations used the
bert-base-uncased and bert-large-uncased variants from the Hugging Face Transformers li-
brary, fine-tuned to predict from a fixed set of K conflict-related categories. Text inputs were
processed using the BertTokenizer for consistent tokenization, truncation, and padding.

Furthermore, no explicit class weights or custom loss functions were applied. How-
ever, using Optuna, key hyperparameters were optimized—including learning rate, batch
size, number of epochs, dropout rate, and weight decay—to improve the classification
performance under a data imbalance.

Each news article was denoted as an input sequence xi, where i ∈ {1, . . . , N} indexes the
article in a dataset of size N. Each article was paired with a binary ground-truth label vector
yi ∈ {0, 1}K, where yik = 1 indicates that article xi belongs to category k, and 0 otherwise.

For the SL-MLG task, the model computes an output logit vector fθ(xi) ∈ RK, where θ

denotes the model parameters, and each component fθ,k(xi) represents the raw, unnormalized
score for category k. The logits are converted into class probabilities via the softmax function:

ŷi = softmax( fθ(xi)) =

 e fθ,k(xi)

∑K
j=1 e fθ,j(xi)

K

k=1

(1)

where ŷi ∈ [0, 1]K is the predicted probability distribution over all categories. ŷik is the
predicted probability that article xi belongs to category k. The sum across all k ensures that

∑K
k=1 ŷik = 1 (2)

The predicted label
∼
y is selected as the index k with the highest predicted probability:

∼
yi = arg max

k
ŷik (3)

This prediction is deemed correct if it appears in the original ground truth multi-label set:
∼
yi ∈ {k | yik = 1} (4)

In the MLC setting, the model again produces logits fθ(xi) ∈ RK. Instead of using
softmax, a sigmoid activation is applied independently to each category score:

ŷik = σ( fθ,k(xi)) =
1

1 + e− fθ,k(xi)
(5)

where ŷik ∈ [0, 1] is the predicted probability that article xi belongs to category k. Each
score is interpreted independently, allowing multiple labels per article. The final predicted
label set

∼
yi ∈ {0, 1}K is computed by applying a threshold τ = 0.5 to each probability:
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∼
yik =

{
1, i f ŷik ≥ 0.5
0, otherwise

(6)

This allows the model to assign multiple categories to a single article.
To address the concern regarding the limited size of the test set in the initial

90/10 training–testing split, which resulted in only the same 43 articles used in the evalu-
ation, we implemented a 5-fold cross-validation 80/20 training–testing split strategy to
strengthen the validity and reliability of our results. By adopting k-fold cross-validation,
we ensured that each article in the dataset was used for both training and evaluation
across different folds, providing a more comprehensive and balanced assessment of the
model’s performance. This approach further mitigated any potential bias introduced by
relying on a single, fixed test subset and helped verify that the results were not dependent
on a particular partition of the data.

The cross-validation procedure was applied exclusively to the BERT models. This is
because BERT requires supervised fine-tuning on labeled data, and its architecture supports
retraining across multiple folds without excessive overhead. In contrast, the GPT-based
models in this study were used in a prompt-based setting without additional fine-tuning.
Accordingly, cross-validation was limited to BERT.

4.1.2. GPT

The GPT-based classification framework was designed to evaluate the performance
of seven open-source LLMs: Gemma2-9b, Gemma2-27b, Llama3.3-70b, Llama3.2-3b,
Llama3.1-70b, Llama3.1-7b, and Mistral-7b. The goal was to identify the most effective
model for both SL-MLG and MLC in classifying conflict-related news articles.

To analyze their performance under varying learning conditions, three distinct prompt-
ing methodologies were employed:

(1) Zero-Shot Prompting—The model was only provided with the input article xi , with
no additional contextual information. This setting evaluates the model’s raw generalization
ability based on its pre-trained knowledge:

∼
yi = arg max

k
pϕ(y | P(xi)) (7)

(2) RAG Without Definitions—The model received a prompt P(xi) composed of the
article xi and a flat list of category names C. This format provides some task grounding
while still relying on the model’s internal representations:

∼
yi = arg max

k
pϕ(y | P(xi, C)) (8)

(3) RAG with In-Context Learning (ICL): The prompt was expanded to include the
article xi , category names C, and detailed expert-annotated definitions for each category
D. This setup offers the highest level of task-specific guidance:

∼
yi = arg max

k
pϕ(y | P(xi, C, D)) (9)

To support the RAG and RAG ICL approaches, Facebook AI Similarity Search (FAISS)
was employed to build an efficient dense vector index of the expert-defined category defini-
tions and curated context examples [44]. During inference, the top-k most relevant vectors
were retrieved and appended to each prompt, enabling the LLM to incorporate precise
in-domain context without relying on external documents or a general web-scale corpus.

All GPT model experiments were conducted on a high-performance workstation
equipped with an Intel(R) Xeon(R) w3-2423 CPU, 128 GB of RAM, and dual NVIDIA
RTX A6000 GPUs (each with 48 GB of VRAM). This setup enabled efficient execution of
large-scale models such as Gemma2–27B and Llama3.1–70B, particularly for RAG pipelines
involving long-context prompts.
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4.2. Evaluation Matrix
4.2.1. BERT

The BERT-based and BERT-large classification models were evaluated using different
metrics tailored to the requirements of SL-MLG and MLC tasks. These evaluation metrics
ensured a comprehensive assessment of model performance and provided insights into the
impact of hyperparameter tuning on classification accuracy.

For SL-MLG, accuracy served as the primary evaluation metric, reflecting the model’s
ability to select the single label that best describes the primary issue from multiple ground-
truth categories. Predictions were generated using a softmax activation function, which
converted the model logits into probability distributions across all categories. The category
with the highest probability was selected as the final classification.

To assess alignment with expert labeling, accuracy was calculated by verifying whether
the predicted category matched any of the ground-truth labels assigned by the experts.
This metric emphasized the model’s ability to prioritize the most relevant category while
adhering to the strict single-label requirement of the SL-MLG framework.

For MLC, model performance was measured using accuracy, precision, recall, and
F1-score, calculated on a per-category basis and averaged using a weighted scheme. These
metrics were chosen to assess both precision (the proportion of correctly predicted labels
among all predicted labels) and recall (the proportion of correctly predicted labels among all
actual labels assigned to an article), with F1-score providing their harmonic mean, ensuring
a balanced evaluation of prediction correctness and completeness.

Predictions were generated by applying a sigmoid activation function to the model
logits, converting them into probability scores for each category. A threshold of 0.5 was
used to determine whether a category was assigned to an article. The evaluation pipeline
compared these binary predictions against the ground truth labels from the test dataset,
computing accuracy, precision, recall, and F1-score accordingly. The results were analyzed
for both the standard BERT model with fixed hyperparameters and the hyperparameter-
tuned BERT model optimized using Optuna, highlighting the effects of parameter tuning
on classification performance.

4.2.2. GPT

The GPT-based classification models were evaluated using distinct metrics tailored to
the SL-MLG and MLC frameworks. This evaluation aimed to assess GPT’s ability to align
with expert-labeled categories while identifying potential strengths and limitations of its
classification performance.

For SL-MLG, model performance was evaluated using an exact-match accuracy metric,
which assessed whether the model’s single predicted category matched any of the ground-
truth labels. To ensure consistency in comparison, both the ground-truth labels and model
outputs were normalized by converting text to lowercase and removing extra spaces.
Each prediction was assigned a binary score: 1 if the predicted category matched any of
the annotated labels, and 0 otherwise. These scores were then averaged across all test
samples to produce the final accuracy score. This single-metric evaluation reflects GPT’s
effectiveness in selecting the single label that best describes the primary issue from multiple
valid options and avoids the use of precision or recall, which are less applicable when
evaluating a single predicted label against multiple ground-truth categories, as in SL-MLG.

For MLC, model performance was measured using accuracy, precision, recall, and
F1-score, calculated at both the article and category levels. Additionally, false positives
(FPs), false negatives (FNs), and true positives (TPs) were tracked to analyze classification
biases and potential weaknesses in specific categories. To compute these metrics, predicted
categories were extracted from the model’s textual outputs and compared against the
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ground-truth labels. The evaluation process treated these extracted categories as unordered
sets, ensuring that variations in category ordering did not affect results.

• Accuracy was determined by checking whether the predicted set of categories exactly
matched the ground-truth set for each article.

Accuracy =
Correctly Classified Categories

Total Categories
(10)

• Precision measured the proportion of correctly predicted categories among all pre-
dicted labels.

Precision =
TP

TP + FP
(11)

• Recall quantified the proportion of relevant categories successfully identified by the model.

Recall =
TP

TP + FN
(12)

• F1-score, the harmonic mean of precision and recall, provided a balanced assessment
of classification performance.

F1 − Score = 2 × Precision × Recall
Precision + Recall

(13)

Additionally, the per-category analysis aggregated FP and FN counts across the dataset,
identifying categories where the model struggled.

5. Results
5.1. SL-MLG

The overall performances of the three GPT methodologies (Zero-Shot, RAG, and
RAG ICL) and two BERT configurations (standard and hyperparameter-tuned) in SL-MLG
classification were compared (Table 4). The evaluation focused on accuracy and total
runtime to assess the models’ ability to prioritize a single most relevant category from
multi-label ground truth.

Table 4. SL-MLG results of BERT and GPT models. Total runtime is split into three columns: TUNING,
TRAINING, and INFERENCE. Only BERT models include values for TUNING and TRAINING due
to the need for hyperparameter tuning and supervised training. GPT models rely solely on prompt-
based inference, resulting in blank entries for TUNING and TRAINING columns.

MODEL TUNING TRAINING INFERENCE ACC.

RAG ICL
Gemma2-9b 1 m 14 s 79.07%

Gemma2-27b 1 m 51 s 86.05%
Llama3.3-70b 3 m 12 s 90.70%
Llama3.2-3b 3 m 29 s 9.30%

Llama3.1-70b 3 m 14 s 90.70%
Llama3.1-7b 1 m 3 s 86.05%
Mistral-7b 1 m 8 s 79.07%

RAG
Gemma2-9b 1 m 9 s 58.14%

Gemma2-27b 1 m 21 s 69.77%
Llama3.3-70b 1 m 44 s 86.05%
Llama3.2-3b 1 m 44.19%

Llama3.1-70b 1 m 45 s 81.40%
Llama3.1-7b 1 m 49 s 65.12%
Mistral-7b 1 m 62.79%
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Table 4. Cont.

MODEL TUNING TRAINING INFERENCE ACC.

Zero-Shot
Gemma2-9b 20 s 65.12%

Gemma2-27b 32 s 67.44%
Llama3.3-70b 40 s 76.74%
Llama3.2-3b 9 s 41.86%

Llama3.1-70b 49 s 72.09%
Llama3.1-7b 12 s 48.84%
Mistral-7b 12 s 51.16%

BERT hp-tuned
bert-base-uncased 137 m 57 s 7 m 20 s 1 s 74.42%
bert-large-uncased 1170 m 9 s 73 m 19 s 20 s 83.72%

BERT
bert-base-uncased 10 m 4 s 1 s 76.74%
bert-large-uncased 28 m 29 s 2 s 74.42%

The GPT models exhibited high accuracy overall. Under the RAG ICL setting, the
Llama3.3-70b and Llama3.1-70b models achieved the highest performance, both reaching
90.70% accuracy. In comparison, Gemma2-27b and Llama3.1-7b followed closely with
86.05% accuracy under RAG ICL. The RAG methodology without category definitions also
yielded competitive results, with Llama3.3-70b achieving 86.05% accuracy, demonstrating
that retrieval-based approaches can enhance classification performance.

Zero-Shot configurations offered the best computational efficiency, with runtimes
as low as 9 s per inference, but at the cost of lower accuracy, peaking at 76.74% for
Llama3.3-70b. This suggests that while Zero-Shot prompting enables rapid inference,
its lack of contextual grounding affects classification precision.

BERT models performed competitively, though with lower accuracy than GPT models.
The hyperparameter-tuned bert-large model achieved the highest accuracy of all the BERT
configurations at 83.72%, slightly outperforming the standard bert-large version (74.42%).
However, the tuned model required significantly longer runtimes (1243 m 48 s vs. 28 m
31 s), indicating that while hyperparameter optimization yielded accuracy gains in this
specific SL-MLG setting, this also came with a significant time increase.

5.2. MLC

The overall performances (Table 5) of the three GPT methodologies (Zero-Shot, RAG,
and RAG ICL) and two BERT configurations (standard and hyperparameter-tuned) in the
MLC task were compared, focusing on accuracy, precision, recall, F1-score, and runtime.

The GPT models exhibited varying performance across different methodologies. BERT
models, on the other hand, demonstrated similarly consistent performances, with hyperpa-
rameter tuning providing slight improvements in scores. The bert-large hyperparameter-
tuned model achieved the highest F1-score (68.90%), outperforming the close second, the
Llama3.1-70b model under RAG counterpart (68.80%). Llama3.1-70b under RAG outper-
formed its counterpart Llama3.1-70b under RAG ICL (67.00%). Similarly, Llama3.3-70b
performed better in F1-score under RAG (67.30%) than under RAG ICL (64.42%), indicating
that RAG generally outperformed RAG ICL, particularly for larger models. However, RAG
ICL remained competitive, with Gemma2-27b showing comparable F1-scores. Accuracy
among the GPT models remained modest, with the highest accuracy for the GPT models
being recorded at 25.58% for Llama3.1-70b under RAG ICL. Recall scores, however, were
consistently strong across all methodologies, highlighting GPT’s ability to comprehensively
capture relevant categories, even at the expense of precision.
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Table 5. MLC results of GPT and BERT models. Total runtime is split into three columns: TUNING,
TRAINING, and INFERENCE. Only BERT models have tuning and training times; GPT models rely
on prompt-based inference, explaining the blank entries in the TUNING and TRAINING columns.

MODEL TUNING TRAINING INFERENCE ACC. PREC. REC. F1

RAG ICL
Gemma2-9b 1 m 17 s 13.95% 65.89% 48.26% 53.03%
Gemma2-27b 1 m 54 s 18.60% 77.52% 56.40% 62.21%
Llama3.3-70b 3 m 56 s 6.98% 59.34% 77.13% 64.42%
Llama3.2-3b 1 m 42 s 0.00% 26.87% 84.50% 36.36%

Llama3.1-70b 3 m 30 s 25.58% 78.49% 63.37% 67.00%
Llama3.1-7b 1 m 22 s 6.98% 49.08% 67.05% 50.95%
Mistral-7b 1 m 18 s 11.63% 67.44% 50.39% 53.88%

RAG
Gemma2-9b 1 m 12 s 9.30% 61.24% 63.76% 59.35%
Gemma2-27b 1 m 40 s 9.30% 61.05% 61.43% 57.88%
Llama3.3-70b 2 m 36 s 11.63% 62.02% 80.62% 67.30%
Llama3.2-3b 1 m 6 s 2.33% 2.33% 2.33% 2.33%
Llama3.1-70b 2 m 30 s 16.28% 70.74% 73.84% 68.80%
Llama3.1-7b 1 m 12 s 13.95% 51.16% 72.29% 57.22%
Mistral-7b 1 m 8 s 9.30% 53.91% 59.88% 52.04%

Zero-Shot
Gemma2-9b 32 s 11.63% 55.04% 57.56% 53.48%
Gemma2-27b 48 s 20.93% 59.69% 55.81% 53.22%
Llama3.3-70b 1 m 31 s 9.30% 62.95% 71.51% 62.75%
Llama3.2-3b 22 s 6.98% 37.91% 43.22% 37.69%

Llama3.1-70b 1 m 21 s 16.23% 66.05% 63.37% 60.79%
Llama3.1-7b 25 s 11.63% 46.85% 52.91% 45.52%
Mistral-7b 28 s 6.98% 41.30% 50.19% 41.73%

BERT hp-tuned
bert-base-uncased
bert-large-uncased

181 m 51 s
1190 m 22 s

5 m 54 s
160 m 33 s

18 s
19 s

34.88%
41.86%

72.61%
75.70%

57.78%
64.44%

63.01%
68.90%

BERT
bert-base-uncased
bert-large-uncased

9 m 41 s
14 m 54 s

2 s
1 s

30.23%
27.91%

71.18%
64.32%

57.78%
52.22%

62.85%
54.62%

The BERT models demonstrated higher precision than the GPT models, with the bert-
large hyperparameter-tuned configuration achieving an F1-score of 68.90% and a precision
of 75.70%, outperforming the standard bert-large model (F1-score of 54.62%, precision
of 64.32%). However, the BERT models exhibited lower recall scores than the GPT mod-
els, with both the hyperparameter-tuned bert-base model and standard bert-base model
achieving recall scores of 57.78%, indicating that while BERT excels in precise category
assignment, it struggles to comprehensively capture all relevant categories.

The highest overall F1-score (68.90%) was achieved by the hyperparameter-tuned bert-large
model, surpassing the best GPT model, Llama3.1-70b under RAG, with an F1-score of 68.80%.
Similarly, in terms of accuracy, all the BERT models achieved higher scores than all the GPT
models with the hyperparameter-tuned bert-large model achieving the highest score of 41.86%.

Computational efficiency differed significantly between the BERT and GPT mod-
els. Since BERT requires both training and inference time, the standard bert-base model
completed training and inference in 9 min and 43 s, and the standard bert-large model
completed training and inference in 14 m 55 s. For the hyperparameter-tuned models,
the runtime was divided into three parts; (1) tuning, (2) training, and (3) inference. The
bert-base hyperparameter-tuned version required a total of 187 min and 45 s while the
bert-large hyperparameter-tuned version took a total of 1351 m 14 s (~22.5 h) due to the
~3X larger parameter size bert-large has over bert-base. In contrast, the GPT models only
required inference time, with the best model GPT model, Llama3.1-70b under RAG, run-
ning in 2 m 30 s, completing the runtime in a significantly faster margin compared to the
hyperparameter-tuned bert-large model, which only beat it by 0.10%.

This highlights a key trade-off between computational cost and classification perfor-
mance, where BERT incurs higher computational overhead due to tuning, training, and
inference, while GPT achieves rapid inference but relies heavily on prompt engineering for
classification accuracy.
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Table 6 presents an example from Llama3.3-70b under RAG ICL, in which the model
achieved a perfect multi-label classification. This example illustrates the model’s ability to
correctly identify all relevant categories in a conflict narrative, aligning with its high F1-score
and strong recall score in the overall MLC results. Furthermore, it demonstrates how larger-
parameter models like Llama3.3-70b outperform smaller models such as Llama3.1-7b, which
achieved an F1-score of only 50% on the same example because it missed two of the three
ground-truth categories: Willful killing of civilians and Indiscriminate use of weapons.

Table 6. Example of an MLC result generated by Llama3.3-70B using the RAG ICL method.

Incident Narrative

Clashes between the Sudanese Armed Forces (SAF) and its paramilitary
counterpart, the Rapid Support Forces (RSF), continue in various parts of the

country. On April 18, artillery shelling led to the death of a person in El Obeid,
the capital of North Kordofan.

Ground Truth Indiscriminate use of weapons, Willful killing of civilians, Military operations
(battle, shelling)

LLM Output Willful killing of civilians, Military operations (battle, shelling), Indiscriminate
use of weapons

ACC. 100%
PREC. 100%
REC. 100%

F1 100%

TP Military operations (battle, shelling); Willful killing of civilians; Indiscriminate
use of weapons

FP N/A *
FN N/A *

* False Positives (FP) and False Negatives (FN) are marked as N/A because the model in the example achieved
a perfect prediction. All ground truth categories were correctly identified, and no incorrect labels were predicted,
resulting in zero false positives and zero false negatives.

5.3. K-Fold CV

To address concerns with the limited test size from the original 80/20 split (43 articles),
5-fold cross-validation was applied to strengthen the reliability of the evaluation. This
was performed across four BERT configurations: MLC and SL-MLG using both bert-base-
uncased and bert-large-uncased.

As shown in Table 7, performance improved across all metrics when using bert-
large-uncased, particularly for MLC, which achieved an F1-score of 70.35 ± 2.12% and
an accuracy of 39.24 ± 4.01%. In comparison, the original 90/10 split yielded lower MLC
F1-scores of 62.85% (standard bert-base) and 54.62% (standard bert-large). Similarly, SL-
MLG accuracy improved under cross-validation, with bert-large achieving 85.83 ± 3.53%,
compared to 76.74% in the original split. These results underscore the importance of
using cross-validation, especially in low-resource settings, to produce more robust and
generalizable performance estimates.

Table 7. K-Fold CV results for BERT models on MLC and SL-MLG without HP tuning.

MODEL TASK ACC. ± SD F1 ± SD PREC. ± SD REC. ± SD AVG. FOLD TIME

bert-base-uncased MLC 27.90 ± 2.90% 56.94 ± 4.76% 59.50 ± 7.62% 57.29 ± 4.37% 9 m 16 s
bert-large-uncased MLC 39.24 ± 4.01% 70.35 ± 2.12% 76.85 ± 4.52% 69.53 ± 2.20% 30 m 7 s
bert-base-uncased SL-MLG 77.10 ± 5.95% — — — 9 m 23 s
bert-large-uncased SL-MLG 85.83 ± 3.53% — — — 31 m 17 s

Due to computational constraints, hyperparameter tuning via Optuna was excluded
from the cross-validation runs. As a result, only standard BERT configurations without
tuning were evaluated. Despite repeating training and inference across multiple folds, the
average fold times remained reasonable, ranging from 9 m 16 s (bert-base) to 31 m 17 s
(bert-large), further supporting the practicality of K-fold cross-validation for evaluating
classification models in this domain.
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6. Discussion
The experimental results demonstrate that both BERT and GPT exhibit distinct

strengths and weaknesses in SL-MLG and MLC tasks, with differences in precision, recall,
accuracy, computational efficiency, and adaptability. The choice between the two depends
on the specific classification requirements, the need for model fine-tuning, and the con-
straints of the computational resources. Tables 8 and 9 summarize the highest-performing
algorithm from each table presented in the preceding sections.

Table 8. Collective SL-MLG experimental results.

METHOD MODEL TUNING TRAINING INFERENCE ACC.

RAG ICL Llama3.3-70b 3 m 12 s 90.70%
RAG ICL Llama3.1-70b 3 m 14 s 90.70%

RAG Llama3.3-70b 1 m 44 s 86.05%
Zero-Shot Llama3.3-70b 40 s 76.74%

BERT hp-tuned
BERT hp-tuned

bert-base-uncased
bert-large-uncased

137 m 57 s
1170 m 9 s

7 m 20 s
73 m 19 s

1 s
20 s

74.42%
83.72%

BERT
BERT

bert-base-uncased
bert-large-uncased

10 m 4 s
28 m 29 s

1 s
2 s

76.74%
74.42%

Table 9. Collective MLC experimental results.

METHOD MODEL TUNING TRAINING INFERENCE F1.

RAG ICL Llama3.1-70b 3 m 30 s 67.00%
RAG Llama3.1-70b 2 m 30 s 68.80%

Zero-Shot Llama3.3-70b 1 m 31 s 62.75%
BERT hp-tuned
BERT hp-tuned

bert-base-uncased
bert-large-uncased

181 m 51 s
1190 m 22 s

5 m 54 s
160 m 33 s

18 s
19 s

63.01%
68.90%

BERT
BERT

bert-base-uncased
bert-large-uncased

9 m 41 s
14 m 54 s

2 s
1 s

62.85%
54.62%

Furthermore, to support a fair and statistically robust evaluation, the BERT models
were tested using both a traditional 90/10 training–testing split and 5-fold cross-validation.
The initial 90/10 experiments provided a fast baseline and enabled hyperparameter tun-
ing via Optuna, resulting in improved F1-scores but at the cost of a longer runtime.
However, due to concerns about the same small test set size (43 articles), we introduced
5-fold cross-validation for both the MLC and SL-MLG tasks using bert-base and bert-large.
This approach yielded higher and more stable performance metrics, particularly for bert-
large, and confirmed that BERT performance scales reliably with model size. To ensure
computational feasibility, hyperparameter tuning was excluded from the cross-validation
runs, although the average fold runtimes remained manageable (9–31 min). This compre-
hensive evaluation strategy ensured that our conclusions about BERT model performance
mitigated concerns regarding statistical significance and generalizability.

For both the SL-MLG and MLC tasks, larger models (e.g., Llama3.1-70b, Gemma2-27b,
and bert-large) consistently outperformed their smaller counterparts (e.g., Llama3.1-7b,
Gemma2-9b, and bert-base). This suggests that higher-parameter models benefit from
increased contextual retention, enabling better generalization in complex classification
tasks. For example, for MLC, Llama3.1-70b under RAG achieved an F1-score of 68.80%,
outperforming Llama3.1-7b (57.22%). Similarly, Gemma2-27b under RAG ICL showed
a superior F1-score (62.21%) compared to Gemma2-9b (53.03%). This trend suggests that
higher-parameter models are better suited for handling nuanced, multi-label classification
tasks, likely due to their enhanced capacity to model overlapping semantic categories.

A similar trend was observed in SL-MLG, where Llama3.1-70b achieved the highest
accuracy (90.70%), surpassing Llama3.1-7b (86.05%). Likewise, Gemma2-27b (86.05%
accuracy) outperformed Gemma2-9b (79.07%).



Algorithms 2025, 18, 420 16 of 21

These results suggest that higher-parameter models improve classification accuracy,
reinforcing their advantages in structured classification tasks. While model size contributes
to the advantage in classification tasks, performance is also influenced by architectural
differences between BERT and GPT, the choice of prompting strategy, and the inclusion of
hyperparameter tuning.

Notably, a key trend observed in this study was the low performance of Llama3.2–3b
across all metrics, which demonstrated low performance in SL-MLG and MLC. This under-
performance was not due to the relatively small parameter size of 3B but primarily resulted
from its guardrails. For example, in the Zero-Shot and standard RAG configurations,
the model frequently refused to classify violent or sensitive content and instead returned
refusal messages. However, when explicit category definitions were provided through
the RAG ICL approach, this behavior was largely mitigated, and the model executed the
classification task as intended. This finding underscores the critical role of carefully choos-
ing the best prompting strategy for each domain-related task in order to ensure compliant
behavior when utilizing LLMs for a task such as sensitive crisis-related text classification.

One of BERT’s primary advantages lies in its higher precision in multi-label classi-
fication tasks, where it consistently outperforms GPT in assigning categories with fewer
false positives. Its bidirectional training mechanism allows it to capture deeper contextual
relationships, leading to more accurate classifications in structured tasks. In the SL-MLG
tasks, BERT also demonstrated better alignment with the ground-truth labels, achieving the
highest accuracy among all configurations. This suggests that BERT’s fine-tuned models
are better suited for tasks requiring exact category assignment. Additionally, BERT’s fine-
tuning process enables structured optimization for domain-specific classification, allowing
for more refined learning in well-defined datasets. Furthermore, BERT models produce
more stable and deterministic outputs, whereas GPT’s responses may vary across different
runs, making BERT more reliable for structured applications that require consistent and
reproducible classifications.

However, BERT had notable limitations compared to GPT. One major drawback
is its lower recall in MLC tasks, meaning it often fails to capture the complete set of
relevant categories for an article. This conservative classification approach can lead to
under-classification, where important categories are overlooked. Additionally, BERT’s
reliance on supervised fine-tuning makes it computationally expensive, requiring extensive
training for each new dataset. In contrast, GPT operates without the need for fine-tuning,
significantly reducing the setup time. Furthermore, BERT’s limited adaptability to new
domains makes it less flexible in handling unseen datasets. Since BERT relies on task-
specific fine-tuning, it struggles to generalize as effectively as GPT’s in-context learning,
which enables classification across a wide range of topics without retraining.

The RAG approach without definitions provided GPT models with only category
names as prompts, requiring the model to rely solely on pre-trained knowledge for classifi-
cation. This approach generally outperformed Zero-Shot prompting and, in some cases,
even RAG ICL, particularly for larger models. For example, Llama3.1-70b under RAG
achieved an F1-score of 68.80% in MLC, demonstrating that models with extensive pre-
training can classify effectively without explicit category descriptions. In the SL-MLG tasks,
RAG also showed competitive results, with Llama3.3-70b achieving an accuracy of 86.05%,
only slightly below RAG ICL’s best-performing models.

The RAG ICL approach, which incorporated expert-annotated category definitions
in the prompt, provided the highest classification accuracy across the SL-MLG tasks. This
method improved classification precision by providing GPT with structured, contextual
definitions of each category, guiding more accurate label selection during inference. For
MLC, however, the results were more mixed. While RAG ICL improved classification
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accuracy, it did not consistently outperform RAG without definitions across all models.
This suggests that while category definitions improve classification in SL-MLG tasks, they
may introduce unnecessary constraints in MLC, where capturing multiple relevant labels
is essential. Nevertheless, RAG ICL remains a viable approach for classification tasks
requiring strict category definitions and interpretability.

Comparison with Similar Studies

To contextualize our contributions within the broader landscape of transformer-based
text classification, a comparative analysis was conducted to compare this research to
recent studies that have applied BERT, GPT, or similar models to news classification tasks.
Particular emphasis was placed on works addressing long-form, multi-label, or crisis-
related content. Table 10 summarizes each selected study’s methodological approach,
domain focus, and key findings, and provides a comparison with this study.

Table 10. Comparative summary of related studies and this research.

Study Model(s) Used Dataset Task Key Findings Limitations

Sufi (2024) [10] GPT-3.5-Turbo, CNN 1M+ news articles over
405 days from 100+ sources

Categorization,
correlation analysis,
anomaly detection

90.67% classified into
202 subcategories;

F1-score: 0.921; 85%
anomaly detection

sensitivity; effective use
of GPT embeddings and

knowledge graphs.

Fixed thresholds limit
adaptability; taxonomy gaps

excluded some topics.

Chen et al.
(2022) [11] BERT + CNN Chinese news from Toutiao

(approx. 240k+ samples)
Long-text classification

(headline + body)

Combining BERT and
CNN outperformed

baselines (SVM, GRU,
and BERT alone);

improved handling of
long-text context and

feature extraction.

Used only one LLM; no
comparison with other

models tested; only explored
Zero-Shot prompting.

Fatemi et al.
(2023) [12]

GPT-3.5-Turbo
(Zero-Shot,

hierarchical prompt)

4.7 k English news articles,
17 top/51 sub IPTC topics

Multi-class
news tagging

average F1: 80%;
BERT-based fine-tuned

models beat ML and
BERT baselines;

clustering metrics
confirmed label quality.

Some articles dropped (token
cap); Level 2 hurt by class

imbalance; still minor
sub-category hallucinations.

Brandt et al.
(2024) [45]

ConfliBERT
(domain-specific

BERT) compared to
LLaMA 3.1 (7B),

Gemma 2 (9B), Qwen
2.5 (14B)

BBC, re3d, GTD (37k
conflict events)

Relevance classification,
actor/action

extraction, NER

Outperformed larger
LLMs in accuracy and

macro F1 (~0.79);
100–300× faster than

7–14B models

Does not leverage prompting
strategies or retrieval

augmentation.

Wang et al.
(2024) [13]

RoBERTa-large (a
fine-tuned BERT

model) and GPT-4o
using Zero-Shot and
few-shot prompting.

Multiple political text
datasets (e.g., Sentiment
News, Party Manifestos,
Parliamentary Speeches,

COVID-19 Policies,
SOTU Speeches)

Text classification
(binary, 8-, 20-, and

22-class)

Fine-tuned BERT
outperforms GPT as

data increases, but GPT
is competitive in low-
data or simple tasks,

with 2-shot prompting
sometimes matching

BERT with
1000 samples.

Only GPT-4o used; does not
explore retrieval

augmentation strategies.

Masri et al.
(2025) [This study]

BERT (standard and
hyperparameter-

tuned), GPT-based
LLMs (Llama3.3-70B,

Llama3.1-70B,
Gemma2-27B,

Mistral-7B, etc.) with
Zero-Shot, RAG, and
RAG+ICL strategies

4234 conflict-related articles
on the Sudan Conflict

(January–November 2024),
expert-annotated with

17 overlapping categories

Multi-Label and
Single-Label

Classification of crisis
news using SL-MLG and

MLC frameworks

BERT models (esp.
HP-tuned BERT-large
model) achieved the

highest MLC F1-score
(68.90%); RAG ICL

yielded the best SL-MLG
accuracy (90.70%). BERT
showed higher precision
and SL-MLG accuracy

with lower recall. Larger
LLMs benefited from
contextual prompting

and outperformed
smaller models.

Dataset was small, imbalanced,
and domain-specific; BERT
required costly tuning; GPT
performance varied across

prompt designs; classification
impacted by overlapping

categories and model refusal
behavior without
explicit context.

This comparison illustrates several key gaps addressed by this study. First, while
previous works such as Sufi [10] and Fatemi et al. [12] leveraged powerful LLMs for struc-
tured news analytics, they operated on large, general-purpose datasets and did not address
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classification under multi-label or conflict-specific ambiguity. Others, like Brandt et al. [45],
emphasized speed and domain tuning but did not explore prompting strategies or retrieval-
augmented methods. Notably, most prior studies tested either BERT or GPT models
individually, with limited emphasis on direct comparisons across prompting modes or
under extreme class imbalance.

In contrast, our study systematically benchmarked multiple open-source GPT models
and BERT models and configurations on a constrained, real-world conflict dataset annotated
by domain experts. By incorporating retrieval-based prompting such as RAG and RAG
ICL, context grounding was shown to improve classification performance in both single-
and multi-label settings. Furthermore, we evaluated computational efficiency alongside
accuracy, offering practical insights for deployment in humanitarian contexts. As such, this
research contributes to a reproducible, end-to-end evaluation framework for transformer-
based crisis classification and highlights the best practices for model selection, tuning, and
contextualization under domain and data constraints.

7. Conclusions
By systematically evaluating the strengths and limitations of both transformer-based

architectures, this study provides valuable insights into optimizing NLP models for classifying
real-world news events in the context of conflict analysis. The study performed a comparative
analysis of BERT and GPT for conflict-related text classification, evaluating their performance
in both SL-MLG and MLC tasks. The experimental results indicate that GPT excelled in recall
for MLC in the Sudan case. These findings highlight GPT’s strength in flexible multi-label
classification and BERT’s reliability in well-defined, high-precision classification tasks.

In both tasks, larger LLMs consistently outperformed their smaller counterparts.
Llama3.1-70B under RAG achieved the second highest F1-score in MLC, while Llama3.3-70B
and Llama3.1-70B under RAG ICL achieved the highest accuracy in SL-MLG. BERT, though
outpaced in recall, remained highly precise and performed strongly, achieving the highest
F1-score with the hyperparameter-tuned bert-large model achieving a score of 68.90%
and achieving relatively strong accuracy scores in SL-MLG. RAG ICL achieved the most
accurate results in SL-MLG, whereas standard RAG produced the second-best MLC perfor-
mance in some configurations, showcasing the importance of prompting strategies. This
suggests that definitions help constrain outputs in structured tasks but may limit flexibility
in multi-label classification.

Despite these plausible results, several challenges remain. First, handling ambiguous
multi-label categories remains a challenge, especially when training data is limited or
inconsistently labeled. In this study, overlapping event categories further complicated
classification, making expert-defined definitions essential for guiding the model. Second,
computational efficiency is a key concern, as BERT requires extensive training, and hy-
perparameter tuning is time intensive. GPT demands significant inference time for larger
datasets, GPU acceleration is important for faster inferencing, and effective prompt en-
gineering [14]. Third, dataset limitations, such as imbalanced category distributions and
inconsistencies in human annotations, affect model performance and generalizability.

Future research should explore advanced classification techniques such as hierarchical
multi-label classification, contrastive learning, and semi-supervised learning to improve
performance on limited datasets with complex category structures.

Future work may also include a context-independent baseline such as FastText to
better isolate the impact of contextual embeddings. While excluded in this study to
maintain a focused comparison between transformer-based models, a future study on
FastText could provide additional insight into the relative benefits of contextualization
for conflict-related text classification.
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By enabling large-scale automated classification of conflict-related articles, this
approach streamlines data collection pipelines for geospatial systems and enhances
the utility of unstructured text in GIS-based analysis. Incident classification directly
supports structured extraction of metadata for automatic mapping, trend analysis, and
early warning systems. For planners and humanitarian organizations, the ability to
consistently label incidents by type allows for improved situational awareness, resource
allocation, and prediction of conflict dynamics. Integration of NLP classification into GIS
frameworks not only improves responsiveness but also opens pathways for predictive
modeling and automatic conflict mapping using spatiotemporal patterns in labeled
conflict data.

The constrained nature of the dataset, which has limited annotated examples and am-
biguous multi-label categories, highlights the importance of selecting appropriate models
and methods tailored to such scenarios. As LLMs continue to evolve, refining their classifi-
cation capabilities for constrained, domain-specific datasets will be critical in advancing
automated information retrieval for conflict monitoring and other critical applications.
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LLM Large language model
ML Machine learning
DL Deep learning
NER Named entity recognition
GPT Generative pre-trained Transformer
BERT Bidirectional encoder representations from Transformers
RAG Retrieval-augmented generation
ICL In-context learning
NLP Natural language processing
MLC Multi-label classification
SL-MLGCV Single-label from multi-label ground truthCross-validation
HP Hyperparameter
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