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ABSTRACT  
Text data such as news from media include different types of 
geographic information, represented by location, that indicates 
the whereabout of events or phenomena. Extracting the 
geographic locations from text within their contexts is 
challenging, even with Natural Language Processing (NLP) tools 
and the latest Large Language Models (LLMs). We propose to 
optimize LLMs using Retrieval-Augmented Generation (RAG) and 
prompt-tuning methods, such as zero-shot and instruction-based 
prompting to improve the precision of extracting location 
information from news. Using Sudan conflict as an example, we 
extracted the corresponding locations and dates for conflict 
incidents. We compared runtime and accuracy of using various 
open-source LLMs, different hyperparameter settings, with and 
without RAG. Traditional Named Entity Recognition (NER), zero- 
shot prompting, instruction-based prompting, few-shot 
prompting, chain-of-thought (CoT) prompting, and RAG-based 
tuning were compared using an evaluation matrix. RAG-based 
tuning delivered the highest F1 score (>0.9) for extracting and 
associating location data with conflict incidents. This research 
highlights the benefits of using RAG for multi-incident context- 
based location extraction and provides insights into optimizing 
LLMs through prompt-tuning, hyperparameter adjustment, and 
model selection for location extraction tasks. The results can also 
be used to extract context-based locations or relevant 
information from text-based documents of other applications.
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1. Introduction

Media such as news articles, social media posts, videos, and transcriptions often contain 
embedded geographic information – including descriptions of locations, regions, and 
movement patterns – that may be extracted to analyze associated events or phenomena 
(Lopez, Magliocca, and Crooks 2019). This geographic information plays a pivotal role in 
understanding the evolution of associated events, behaviors, and trends across temporal 
and spatial dimensions (Shi and Barker 2011; Stefanidis, Crooks, and Radzikowski 2013). 
In times of crisis, such as natural disasters, disease outbreaks, or armed conflicts like the 
ongoing Sudan conflict, the ability to extract accurate spatiotemporal information from 
media data is essential for tracking the spread and impact of these events. This extraction 
process, known as location extraction, enables timely decision-making, facilitates tar
geted responses, and ultimately supports more effective crisis management (Havas 
et al. 2021; Tang et al. 2018; Yu et al. 2020). Whether it’s monitoring the movement of 
refugees during a conflict or allocating resources in a natural disaster, understanding 
where and when events occur allows stakeholders to act efficiently and mitigate 
further risks, making location extraction a crucial aspect for both researchers and respon
ders (Havas et al. 2021; Tang et al. 2018; Yu et al. 2020).

Accurately extracting locations from media content using automated computational 
tools is essential for researchers to uncover spatiotemporal patterns of events. However, 
this information is often complex, as location details are frequently embedded within 
broader contextual elements (Hoang and Mothe 2018; Middleton et al. 2018). Context- 
based location includes not only place names but also more intricate geographic entities, 
such as neighborhoods, landmarks like harbors and mountains, and directional terms 
such as ‘eastern’ (Chen et al. 2022; Hu and Wang 2020). Additionally, locations are 
often intertwined with temporal elements, such as dates or times. A single article may 
contain multiple locations and various types of temporal data (Li et al. 2003; Strötgen, 
Gertz, and Popov 2010). Moreover, to facilitate further analyses based on the extracted 
location data, it is crucial to extract the data into a well-structured format to reduce the 
effort needed for data cleaning after the extraction (Goldberg, Wilson, and Knoblock 2009).

NLP has been proven to be an effective tool for automatically extracting geospatial 
information from media content (Small and Medsker 2014). Traditional methods, 
including geocoding, geoparsing, and geotagging, have been used to identify locations. 
These methods aim to map straightforward place names and detailed location descrip
tions to their corresponding geographic coordinates (Middleton et al. 2018; Wang, 
Hu, and Joseph 2020). However, the introduction of transformer architecture in 2017, 
with its self-attention mechanism, marked a significant advancement in NLP by allowing 
models to capture long-range dependencies in text more efficiently (Vaswani et al. 2017). 
Self-attention enables the model to focus on different parts of a sentence simultaneously, 

2 Z. WANG ET AL.



improving tasks like machine translation, text generation, and comprehension by better 
understanding the context and relationships between words, regardless of their position 
in the text (Vaswani et al. 2017). This architecture led to the development of powerful 
LLMs like Bidirectional Encoder Representations from Transformers (BERT) and Gen
erative Pre-Trained Transformer (GPT) (Devlin et al. 2019; Radford 2018), both of which 
have demonstrated remarkable capabilities in various NLP tasks, including the extraction 
of geospatial information (Hu et al. 2023; Manvi et al. 2023). Despite these advancements, 
challenges remain in accurately extracting complex, multi-entity location descriptions. 
For example, in the context of the current Sudan conflict, a single news article may refer
ence several incidents with different dates and locations. Simple prompt-tuning methods 
struggle to produce the required structured output, where each incident must be associ
ated with ‘neighborhood, state, country, and date’ across multiple lines in the document. 
These methods often miss outputting one or more of these components, which disrupts 
the format expected for post-processing the data. When the output lacks this structured 
format, human intervention is needed to correct or validate the information, adding an 
extra step before any automated processing.

The recently introduced Retrieval-Augmented Generation (RAG) (Lewis et al. 2020) 
combines document retrieval with generative models to enhance the ability of LLMs 
to deliver accurate and contextually relevant answers (Lewis et al. 2020). The model 
retrieves relevant information from a large corpus or knowledge base before generating 
responses, improving its performance on tasks that require knowledge beyond what is 
stored in the model’s parameters (Lewis et al. 2020). The effectiveness of the method 
has been evaluated in respect to tasks like question answering, summarization, and 
fact-checking, demonstrating its potential to optimize the location extraction process 
by addressing key challenges such as improving the accuracy of multi-entity location 
extraction, handling complex geographic descriptions, and ensuring consistency in the 
structured output format. (Ling et al. 2023; Manvi et al. 2023; Yan et al. 2023).

This research aims to address these challenges of context-based location extraction by 
implementing and comparing various methods, including RAG, traditional Named 
Entity Recognition (NER), and prompt-tuning strategies. The study focuses on enhancing 
the accuracy of context-based location extraction from news articles, using articles related 
to the Sudan conflict as a use case. By comparing RAG, NER, and prompt-tuning methods 
as well as evaluating the influence of hyperparameters, this research seeks to identify the 
most effective methods and configurations for extracting location using different open- 
source LLMs. Additionally, this study assesses the runtime and accuracy performance of 
these models to determine the best solution for spatiotemporal extraction tasks.

2. Related work

2.1. Traditional NER approach for location extraction

Previous studies have employed a range of methodologies for regular location extraction, 
typically falling under the category of geoparsing. Geoparsing involves the recognition of 
toponyms in text, often utilizing existing NER tools like Stanford NER, which is particu
larly adept at identifying country and city names (The Stanford NLP Group 2023). NER 
tools are designed to extract toponyms from text by treating locations as a subtype of 
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named entities (Middleton et al. 2018). For example, (Karimzadeh et al. 2019) proposed a 
geoparsing system that incorporates Stanford NER for extracting location mentions from 
unstructured text. (Hu et al. 2023) evaluated several existing NER tools, focusing on their 
performance in identifying geographic entities across different application domains. In 
recent years, researchers have developed innovative techniques by incorporating 
neural network models like the Bidirectional Long Short-Term Memory (BiLSTM) 
and fine-tuning transformer models and integrated those methods with NER to 
further enhance the performance of location information comprehension for NER 
(Hu et al. 2022; Wang, Hu, and Joseph 2020). Kuai et al. attempted to extract spatial 
context-based local toponyms from urban POI data by identifying as many potential 
address components as possible from continuous text strings for each POI, and 
merging neighboring address components into toponyms based on their spatial 
context (Kuai et al. 2020).

However, while these approaches, from an NER perspective, excel in identifying the 
forms of toponyms, they often fall short of recognizing more detailed location infor
mation, such as neighborhood names that are not included in their dictionary as well 
as understanding the complex relationships between the extracted locations and associ
ated context (Gritta et al. 2018; Hu et al. 2023). Additionally, some frameworks rely 
heavily on manually input toponyms and their spatial context prior to extraction, limit
ing their generalizability to less structured addresses or those containing ambiguous geo
graphic information (Kuai et al. 2020).

2.2. Recent GPT approaches for location extraction

LLMs have had a profound impact across diverse domains, including manufacturing, 
education, healthcare, and business. LLMs empower users to tailor conversations to 
specific requirements, encompassing factors like desired length, format, style, level of 
detail, and language. Prompt tuning, a technique that adapts prompts rather than mod
ifying model parameters, has proven effective in enhancing the performance of LLMs 
while requiring fewer resources. Prompt tuning, particularly useful in clinical concept 
extraction and reasoning tasks, leverage strategies like few-shot prompting, zero-shot 
prompting, and instruction-based prompting to guide LLMs toward improved outcomes 
with minimal training data (Peng et al. 2024; Sahoo et al. 2024; Wu et al. 2024). Recent 
research has shown that LLMs equipped with attention mechanisms hold promise for 
improving location extraction accuracy and enhancing the depth of information extrac
tion, particularly in relation to associated topics. For example, (Hu et al. 2023) demon
strated the implementation of GPT models to extract locations in a disaster management 
scenario by testing zero-shot, few-shot, and chain-of-thought (CoT) strategies. (Wang 
et al. 2025) also compared the performance of different GPT models on various NER 
tasks, such as random retrieval, sentence-level embedding, and entity-level embedding.

However, using regular prompt-tuning methods in LLMs for context-based location 
extraction often falls short of achieving full-span matching, necessitating human inter
vention to clean and validate the generated information (Fernandez and Dube 2023; 
Hu et al. 2023; Ji and Gao 2023). For example, LLMs tend to output unnecessary infor
mation, such as explanations alongside the extracted locations, which cannot be directly 
used for further analysis and thus requires additional cleansing. However, there is a lack 
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of literature that shows how much RAG can improve location extraction tasks as com
pared to regular prompt-tuning. For example, (Hu et al. 2023) have examined that to 
output a full-span matching between the model-recognized description and the 
human-annotated location description, ChatGPT4 could only achieve an F1 score of 
0.394. With the fusion of Hu’s Geo-knowledge into the ChatGPT4 model, the F1 score 
will reach 0.695 (Hu et al. 2023). While almost all research used ChatGPT as the base 
model for location extraction, there is a lack of research comparing open-source LLMs 
specifically for context-based location extraction tasks.

2.3. RAG implementation on geospatial sciences

Recent studies have evaluated the effectiveness of employing RAG in tasks like question 
answering, summarization, and fact-checking (Ling et al. 2023; Shlyk et al. 2024; Xiong 
et al. 2024; Yan et al. 2023). Specifically in Geoscience, (Xia et al. 2024) developed a Q&A 
system for typhoon disasters using a RAG-based approach, which involves continuous 
pretraining and fine-tuning with disaster-specific data. Adopting the approach improved 
the performance in delivering accurate and contextually relevant information to users 
during disaster scenarios. (Manvi et al. 2023) extracted geospatial knowledge, such as 
population density and economic livelihoods from auxiliary map data in OpenStreetMap 
by using RAG-enhanced LLMs.

While these studies have demonstrated the applicability of RAG in handling geospatial 
information, there is limited research specifically focusing on context-based location 
extraction from news media sources, which often involve multiple incidents and locations 
in a single news article. To facilitate automated analysis of the incident in the subsequent 
step, locations extracted from news articles must precisely match the required format, 
including all relevant details such as place names and administrative divisions.

2.4. Current challenges and contribution of this study

Based on the literature, the current challenges toward context-based location extraction 
from text includes that 1) identifying complex, multi-entity location descriptions and 
their associated thematic elements is difficult in a required format for further automatic 
processing with a high accuracy. 2) Regular prompt-tuning methods often fall short, 
necessitating human intervention to clean and validate the generated information. For 
example, in the context of the current Sudan conflict, a single news article may reference 
several incidents with different dates and locations. When GPT models are tasked with 
extracting information in a fixed format, such as ‘neighborhood, state, country, and 
date,’ from news content, they often generate additional, unnecessary explanations 
alongside the requested information. 3) There is a lack of studies that specifically inves
tigate how much RAG can improve the accuracy of context-based location extraction 
compared to regular prompt-tuning methods. 4) There is a lack of studies that specifically 
investigate how different open-source LLMs perform on context-based location extrac
tion on the aspect of runtime and accuracy to help researchers reduce the cost compared 
to using closed-source LLMs.

To address the above challenges, this study focuses on 1) presenting the practical 
difficulties of extracting location information from news articles related to the Sudan 
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conflict, where multiple location references are often present within a single article; 2) 
how RAG can improve the accuracy of context-based location extraction when compared 
to traditional prompt-tuning methods by effectively handling the complexity of extract
ing accurate location data; and 3) evaluating the performance of different open-source 
LLMs in both runtime and accuracy, and providing insights into the most efficient 
configurations for using open-source LLMs with RAG for the tasks.

3. Data sources

The Data used in this study comprises detailed news reports of conflict incidents that 
occurred in Sudan between April and September of 2024. These reports were gathered 
from various reliable sources, including CNN (CNN 2024), the (Sudan War Monitor 
2024), (Sudan Tribune 2024), Asharq Al-Awsat 2024), the International Committee of 
the Red Cross (ICRC) (ICRC 2024), Xinhua News and Radio Dabanga (Radio Dabanga 
2024). Each incident has been manually reviewed and cross-verified by Sudan conflict 
experts to ensure accuracy and reliability. These experts not only confirmed the occur
rence of the incidents but also meticulously labeled key information such as location, inci
dent date, and type of event, establishing a reliable ground truth for this study.

Table 1. The structure of the incident dataset and an example of the incident.
Attribute Example

Date 5/27/2024
Incident Narrative As a result of the intensification of fighting between the RSF and the Army who is backed by 

the Joint Force of Armed Struggle Movements, both the security and humanitarian situation 
has deteriorated according to several reports. The Dar El Salam Emergency Room in North 
Darfur said in a statement yesterday that almost 20,000 displaced people have fled to the 
locality to escape fighting in El Fasher and other areas in the past weeks, most of whom are 
staying with host families. ‘There are 11 shelters, 8 of which are schools, in Dar El Salam. The 
displaced are living in difficult conditions due to the lack of external assistance from 
humanitarian organisations.’ Whereas the SAF claims that it has ‘successfully expelled the 
RSF outside of the eastern borders of El Fasher’, the RSF declared on May 26 that it expelled 
an attack by the SAF in El Fasher on May 25 and accused the army and allies of sheltering in 
displaced camps and using civilians as human shields.

Incident type Military operations (battle, shelling)
Incident impact Humanitarian impact: IDP/Refugees flow
(Presumed) perpetrator Both SAF & RSF
Number of Fatalities [empty]
State North Darfur
Location El Fasher
Specifics about the 

location
[empty]

Feature city
Latitude 13.6198
Longitude 25.3549
Maxar Imagery Status Inactive
ReadyToMap Yes
Satellite imagery 

request
Yes

Source 1 Radio Dabanga
URL Link to source 1 https://www.dabangasudan.org/en/all-news/article/msf-employee-killed-by-shell-as-north- 

darfur-fighting-rages-on
Source 2 UN OCHA
URL Link to source 2 https://x.com/CNkwetaSalami/status/1794709045280149769
Source 3 Radio Dabanga
URL Link to Source 3 https://www.dabangasudan.org/en/all-news/article/north-darfur-civilians-flee-catastrophic- 

escalation-in-conflict
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A total of 377 conflict incidents were recorded during the selected timeframe, covering 
21 categories of events such as military operations, war crime, willful killing of civilians, 
etc. For this research, 78 incidents that occurred in May 2024 were selected as the dataset 
to evaluate different methods of context-based location extraction using various LLMs. 
Table 1 shows the structure of the dataset and an example of the incident. The cell ‘Inci
dent Narrative’ was inputted into LLMs, and the ‘State’ and ‘Location’ fields were used to 
verify and validate the outputs of LLMs.

4. Methodologies

Figure 1 outlines the workflow for evaluating the performance of using different methods 
and open-source LLMs to extract context-based locations. After collecting data through 
incident logs that were verified by domain experts, each news article was processed using 
four methods: NER, zero-shot prompting (Kojima et al. 2022), instruction-based 
prompting (Brown et al. 2020), and RAG. NER was implemented using Python packages, 
including spaCy and Geopy (Geopy 2008; Honnibal and Montani 2017). Both zero-shot 
and instruction-based methods were tuned with prompts to extract the locations. For 
RAG implementation, Facebook AI Similarity Search (FAISS), an open-source library 
developed by Meta for efficient similarity search and clustering of dense vectors, was uti
lized to create a vector database for each article and used the same prompt to query the 
LLM for context-based location extraction (Jégou, Douze, and Johnson 2017; Johnson, 
Douze, and Jégou 2019). Each method was tested across different open-source LLMs 
with various hyperparameter settings. Finally, recall, precision, and F1 scores were 
used to evaluate the experiments. More details are provided in the sub-sections.

4.1. Methods configuration

4.1.1. NER
This method does not involve any implementation of LLMs. Only the Python packages, 
spaCy and Geopy were implemented to analyze the geospatial labels of each word entity 

Figure 1. Workflow of investigating the performance of context-based location extraction from news 
documents.
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in the ‘Incident Narrative’ cell. If a word entity is identified by spaCy with the labels 
‘GPE,’ ‘LOC,’ or ‘DATE,’ it will be extracted. ‘GPE’ (Geopolitical Entity) refers to 
countries, cities, states, or other political regions, while ‘LOC’ (Location) refers to phys
ical locations that are not political entities, such as mountains, rivers, or general geo
graphic features. ‘DATE’ refers to any recognized date or date-like expression in the 
text. Once the relevant information is extracted, GPE and LOC entities are passed to 
the GeoPy package to determine the city, state, and country information. Finally, all 
data are output as a string in the format of ‘neighborhood, state, country, date’.

The following three methods are all tested using different LLMs with various 
hyperparameters.

4.1.2. Zero-shot prompting
For the zero-shot prompt-tuning strategy, a fixed prompt template was used (provided in 
Appendix B1). The system prompt instructs the model to generate the location and date 
of each incident described in the news articles. In the user prompt, the content from the 
‘Incident Narrative’ cell serves as the input, with the expectation that the LLMs will 
output only the required information in the fixed format: ‘neighborhood, state, 
country, and MM/DD/YYYY.’

4.1.3. Instruction-based prompting
In the system prompt for the instruction-based method, the LLMs were specifically 
instructed to produce outputs according to the required format to ensure that they 
understood what information to provide and what to exclude. The prompt template is 
provided in Appendix B2.

In this template, ‘’ includes instructions for formatting the extracted geographic 
locations and dates based on the response schema outlined below, ‘’ represents the ‘Inci
dent Narrative’ cell containing the news article about the Sudan conflict, and ‘’ is the gen
erated response. It is important to note that differences in prompt descriptions were 
minimized to ensure a fair comparison between the zero-shot and instruction-based 
prompting methods.

4.1.4. Few-shot prompting
For the few-shot prompting strategy, a prompt template was used that included multiple 
examples to demonstrate the desired input-output behavior. The complete few-shot 
prompt template is provided in Appendix B3. In this template, the system prompt 
includes multiple examples demonstrating the expected output format. In the user 
prompt, the content from the ‘Incident Narrative’ cell serves as the input, with the expec
tation that the LLMs will generate a list of location-date pairs, each on a separate line, 
following the same formatting as in the examples.

4.1.5. Chain-of-thought prompting
For the CoT prompting strategy, the prompt template is provided in Appendix B4. In this 
template, the system prompt instructs the model to explain its reasoning for each 
extracted location and date before outputting the result. Several additional examples 
beyond those shown were included in the prompt to guide the model through various 
types of temporal expressions and complex geographic references. The user prompt 
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provides the narrative input, and the model is expected to produce a two-part response: 
detailed reasoning and a clearly marked final output.

4.1.6. Retrieval-augmented generation (RAG)
As shown in Figure 2, the process of implementing RAG involved utilizing FAISS, a vector 
database tool developed by Meta. This process begins by inputting context-based news 
articles into the embedding base model, where the articles are converted into numerical 
vectors. These vectors capture the semantic content and structural information of the articles 
and are then stored in the FAISS database. The same input is converted into different 
numerical vectors when processed by different LLMs, as each model is trained on a 
unique corpus, which affects the numerical representation of words and the relationships 
between them. When a user query is submitted as a prompt, it is also processed through 
the embedding model to retrieve relevant information from the vector database. By using 
vectorized news articles retrieved along with the prompt, the LLM is fine-tuned to extract 
geographic information from each article. It is important to note that the same prompt is 
used as in zero-shot prompting to evaluate how much RAG improves location extraction.

Prior to implementing RAG, we designed a series of experiments to compare multiple 
prompt-tuning strategies – including zero-shot, few-shot, instruction-based and CoT 
prompting – across different open-source LLMs. Based on this comparison, we would 
select the most consistent and effective prompting strategy as the basis for the RAG pipe
line. The same prompt used in the selected strategy would then be applied within the 
RAG framework to evaluate its impact on context-based location extraction.

4.2. Hyperparameters

In this research, four specific hyperparameters were selected for tuning – model variants, 
temperature, context limits, and maximum tokens. Model variants represent different 
LLM architectures developed by various organizations, each with unique training 
corpus and objectives. Model examples include Gemma2-9B and Llama3.1-7B, where 
the numbers after the dash indicate the approximate size of model parameters in billions. 
In this study, various open-source LLMs were selected for comparison, including 
Llama3.1-7b and Llama3.1-70b from Meta. The Llama3.1 series offers multiple models 
with varying parameter sizes and generally provides a larger context window compared 

Figure 2. Workflow of Implementing RAG to Extract Location.
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to earlier versions (Dubey et al. 2024). Gemma2 was selected from Google DeepMind 
(Team et al. 2024). Mistral was selected from Mistral (Jiang et al. 2023) and Qwen was 
selected from Alibaba (Bai et al. 2023). In the NeedleBench evaluation (Li et al. 2024), 
a framework for assessing long-context comprehension and reasoning, differences 
among these models became evident, with Llama3.1 and Qwen outperforming 
Gemma2 and Mistral in long-context tasks. Generally, a model with more parameters 
(e.g. Llama3.1-70B vs. Llama3.1-7B) offer better performance, particularly in tasks 
requiring nuanced understanding or complex reasoning (Zhang et al. 2024).

Temperature controls the randomness of the LLM’s outputs during text generation. A 
higher temperature increases randomness, producing more creative or varied responses, 
while a lower temperature generates more mundane and factual outputs. Since context- 
based location extraction requires precise information, a lower temperature is generally 
more effective, as it reduces variability and enhances the accuracy of location generation 
(Yu et al. 2024; Renze 2024).

Context limits define the maximum amount of input text the model can process at 
once, which is particularly important in processing long news articles with multiple 
location mentioned. Adjusting the context limits ensure that the model can handle 
longer inputs coherently, improving its ability to extract information from complex 
texts (Ding et al. 2024; Jin et al. 2024).

Maximum tokens set a limit on the total number of tokens that the LLM can generate 
in a sequence. This includes both input tokens and generated outputs, a practice that 
helps manage the overall length of the text and keeps the model within computational 
limits. Tuning this parameter ensures that the model generates concise and relevant 
outputs without exceeding resource constraints (Ding et al. 2024; Jin et al. 2024).

4.3. Evaluation metrics

To evaluate the performance of various methods for extracting context-based locations 
from news articles, a manual evaluation system was implemented, recognizing the limit
ations of relying on LLMs’ self-evaluation (Chern et al. 2024; Chiang and Lee 2023). This 
manual labeling process served as the standard for assessing the accuracy across different 
LLMs in extracting context-based location information, ensuring that any discrepancies 
between the model output and the manually labeled ground truth could be manually 
measured and addressed during the evaluation process. A comprehensive scoring 
system was developed to quantify performance, focusing on four key components: 
date, location, state, and country. Each correctly identified component contributes 
equally, with each component worth 1 point, resulting in a total possible score of 4 
points per incident. If the response did not adhere to the specified schema (e.g. presented 
in paragraph form instead of the required structured format), it automatically receives a 
score of zero. It is critical that the output fully matches the prompt requirements to 
ensure seamless automatic data processing without human intervention. As specified, 
the LLM outputs are expected to follow the format ‘neighborhood, state, country, and 
date (MM/DD/YYYY)’ for each incident. If the LLM generated unnecessary information, 
such as explanations or reasoning, the output was assigned a score of zero, as this 
additional content introduces noise and requires further manual effort to clean before 
launching automated processing, such as spatiotemporal pattern analysis.
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Once the performance score is manually calculated, it is used to determine recall, pre
cision, and F1 scores, three widely accepted metrics for evaluating extraction perform
ance (Gritta, Pilehvar, and Collier 2018; Hu et al. 2023; Purves et al. 2018). As shown 
in equations (1-5), recall is calculated by dividing the total correct points earned by 
the maximum possible points from manual annotation. To minimize the impact of 
random variations or outliers, each method is tested multiple times under the same 
hyperparameter settings and with the same LLM. The recall score is then averaged 
across all news articles through multiple rounds of testing. precision is calculated by 
dividing the total correct points earned by the maximum possible points from all 
results produced by the model. Similarly, precision is averaged across all articles 
through multiple rounds of testing. The F1 score, which is the harmonic mean of pre
cision and recall, will only be high when both precision and recall scores are high.

Recall =
Total Points Earned

Maximum Possible Points from Manual Annotation
(1) 

Recall Score =
1
n

􏽘n

i=1
Recall (2) 

Precision =
Total Points Earned

Maximum Possible Points from Correctly Recognized Results by Model
(3) 

Precision Score =
1
n

􏽘n

i=1
Precision (4) 

F1 score = 2 ∗
Precision Score ∗ Recall Score

Precision Score + Recall Score
(5) 

5. Results

5.1. NER

Although NER tools identified and classified word entities in text into predefined cat
egories such as people, locations, and dates, they presented significant limitations in 
meeting the requirements for location extraction in this study. For example, NER 
tools often failed to extract the country ‘Sudan’ unless the exact term was explicitly men
tioned in the text. Even when related entities such as ‘Sudanese Liberation Movement’ or 
‘Sudanese Armed Forces’ were referenced, the country name was not recognized by the 
NER tools. NER also struggled to interpret the relationship between dates and locations 
in context, frequently extracting irrelevant phrases such as ‘a second consecutive day’ or 
‘that day’ instead of correctly identifying the actual date or leaving the date field blank. 
The format of responses was also inaccurate, contributing to poor performance. For 
instance, when parsing complex sentences describing incidents and locations, NER 
often produced disjointed outputs like ‘North Darfur, Friday’ or ‘Al-Kahraba, May 10,’ 
rather than a coherent extraction like ‘El Fasher, North Darfur, Sudan, May 10.’ These 
challenges underscore the need for more context-aware NER systems. As seen in 
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Table 2, the overall precision, recall, and F1 scores for NER were 50.3%, 34.3%, and 
40.8%, respectively.

5.2. Zero-shot prompting

Table 3 shows the overall performance of different LLMs on context-based location 
extraction under zero-shot prompting. Gemma2-27b achieved the highest overall pre
cision, recall, and F1 scores across various temperature settings, with optimal perform
ance at a temperature of 0.1. While zero-shot prompting occasionally performed well, 
it demonstrated significant limitations, particularly in consistency and formatting. One 
key issue identified was the failure to accurately extract dates, even when they were expli
citly mentioned in the text. For example, the article states that ‘On May 2, the Inter
national Committee of the Red Cross (ICRC) reported that two of its drivers were killed 
by gunmen in South Darfur, Sudan’, the model produced the output ‘Layba, South 
Darfur, Sudan, mm/dd/yyyy’, failing to recognize May 2 altogether. Additionally, zero- 
shot prompting frequently generated responses with excessive or random formatting, 
reducing overall accuracy. For instance, responses like ‘ – Neighborhood: Omdurman, 
State: Khartoum, Country: Sudan, mm/dd/yyyy: 05/03/2024’ deviated from the 
specified format given to the model. Furthermore, formatting issues were exacerbated 
when the model output responses in paragraph form rather than in an ordered list, 
often including unnecessary headings and subheadings.

Table 2.  NER performance.
Method Precision Recall F1 Score

NER 50.3% 34.3% 40.8%

Table 3. Zero-shot prompting performance.
Model Temp Context Limit Maximum Token Runtime Precision Recall F1 Score

Gemma2 - 27b 1 8192 −1 6 m 6s 87.5% 87.2% 87.4%
0.5 8192 −1 6 m 9s 87.5% 86.8% 87.2%
0.1 8192 −1 5 m 58s 88.8% 87.9% 88.3%
0 8192 −1 6 m 47s 88.1% 87.3% 87.7%

Gemma2 - 9b 1 8192 −1 2 m 39s 88.6% 84.9% 86.7%
0.5 8192 −1 2 m 30s 88.1% 85.7% 86.9%
0.1 8192 −1 2 m 31s 87.4% 87.1% 87.2%
0 8192 −1 2 m 45s 88.9% 85.4% 87.1%

Llama 3.1 - 70b 1 8192 −1 10 m 22s 78.4% 77.5% 77.9%
0.5 8192 −1 10 m 18s 77.7% 76.7% 77.2%
0.1 8192 −1 9 m 51s 78.3% 77.6% 78.0%
0 8192 −1 9 m 52s 78.3% 77.5% 77.9%

Llama 3.1 - 7b 1 8192 −1 1 m 56s 72.1 74.7% 73.4
0.5 8192 −1 1 m 32s 71.9 75.4% 73.6%
0.1 8192 −1 2 m 20s 72.1 74.9% 73.5%
0 8192 −1 1 m 57s 71.2 75.2% 73.1%

Qwen – 7b 1 8192 −1 1 m 29s 70.1 65.6% 67.8%
0.5 8192 −1 1 m 51s 70.0 65.4% 67.6%
0.1 8192 −1 1 m 37s 70.5% 64.6% 67.4%
0 8192 −1 1 m 38s 71.1 62.1% 66.3%

Mistral – 7b 1 8192 −1 2 m 23s 56.4 41.5% 47.8%
0.5 8192 −1 2 m 14s 56.3 42.8% 48.6%
0.1 8192 −1 2 m 26s 56.0% 44.3% 49.5%
0 8192 −1 2 m 21s 55.1% 44.9% 49.5%
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5.3. Instruction-based prompting

Table 4 presents the overall performance of different LLMs on context-based location 
extraction using instruction-based prompting. Gemma2-9b achieved the highest pre
cision, recall, and F1 scores across various temperature settings, with optimal perform
ance at a temperature of 0. Initially, it was expected that instruction-based prompting 
would outperform zero-shot prompting; however, its overall performance score was 
lower. A major issue with instruction-based prompting was its tendency to include 
extra, unrequested information in the output. For instance, one output example is: 

```

{

‘Date’: ‘05/03/2024’,

‘Geographic Location’: ‘ Omdurman, Khartoum, Sudan ‘

}

```

This is an example of a conflict incident that occurred in North Darfur state: In El Fasher 
Town, the only working hospital – Southern Hospital’s intensive care unit (ICU) was 
damaged by a ‘strike,’ causing the roof to collapse. This event happened on 2024 
News, as reported by UN emergency relief chief Martin’.

In this case, while the date and location were extracted correctly, the additional expla
nation was not required and detracted from the overall response quality. Furthermore, 
instruction-based prompting struggled with identifying multiple locations within the 
same article, resulting in lower overall success rates for those instances.

Table 4. Instruction-based prompting performance.
Model Temp Context Limit Maximum Token Runtime Precision Recall F1 Score

Gemma2 - 27b 1 8192 −1 3 m 10s 87.5% 67.5% 76.2%
0.5 8192 −1 3 m 10s 89.1% 68.8% 77.7%
0.1 8192 −1 3 m 10s 88.5% 69.4% 77.8%
0 8192 −1 3 m 12s 88.7% 68.1% 77.0%

Gemma2 - 9b 1 8192 −1 1 m 36s 73.4% 68.9% 71.1%
0.5 8192 −1 1 m 38s 84.4% 73.9% 78.8%
0.1 8192 −1 1 m 33s 91.2% 74.4% 81.9%
0 8192 −1 1 m 36s 97.8% 74.8% 84.8%

Llama 3.1 - 70b 1 8192 −1 7 m 12s 74.3% 59.1% 65.9%
0.5 8192 −1 6 m 15s 82.3% 65.7% 73.1%
0.1 8192 −1 6 m 38s 88.9% 71.3% 79.2%
0 8192 −1 6 m 11s 89.8% 72.5% 80.2%

Llama 3.1 −7b 1 8192 −1 1 m 36s 71.1% 61.3% 65.8%
0.5 8192 −1 56s 80.7% 71.3% 75.7%
0.1 8192 −1 1 m 2s 89.8% 72.5% 80.2%
0 8192 −1 1 m 2s 91.2% 69.6% 78.9%

Qwen – 7b 1 8192 −1 2 m 37s 70.1% 41.2% 51.9%
0.5 8192 −1 2 m 29s 85.7% 44.0% 58.1%
0.1 8192 −1 1 m 40s 91.3% 43.3% 58.7%
0 8192 −1 1 m 28s 93.8% 43.9% 59.8%

Mistral – 7b 1 8192 −1 59s 84.5% 68.5% 75.7%
0.5 8192 −1 1 m 12s 87.7% 68.3% 76.8%
0.1 8192 −1 1 m 7s 89.2% 69.6% 78.2%
0 8192 −1 1 m 6s 93.9% 71.2% 81.0%
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5.4. Few-shot prompting

Table 5 presents the overall performance of different LLMs on context-based location 
extraction using few-shot prompting. Gemma2-27b achieved the highest overall pre
cision, recall, and F1 scores across various temperature settings, with optimal perform
ance at a temperature of 0. The performance of few-shot prompting varied across 
models, with several notable issues observed in the outputs. A recurring problem was 
the tendency of models to extract speculative or irrelevant locations in order to match 
the format demonstrated in the examples. In one instance, the article stated: ‘On 
Sunday, May 5th, Sudanese warplanes conducted airstrikes targeting agricultural fields 
where RSF elements are reported located, near Shabarqa, a critical RSF stronghold and 
strategic town that is located approximately 25 kilometers east of Wad Madani, El 
Gezira (aka Al Jazeera) state. Capturing Shabarqa, according to local sources, would 
open the path towards the Hantoub Bridge on the Blue Nile for the Army.’ Gemma2- 
27b at a temperature of 1 produced the following output: 

agricultural fields near Shabarqa, El Gezira, Sudan, 5/5/2024

Shabarqa, El Gezira, Sudan, 5/5/2024

Hantoub Bridge, El Gezira, Sudan, 5/5/2024

In this case, only the first entry accurately reflected the site of the airstrike. The second 
output named Shabarqa itself, even though the article specified the incident occurred 
near Shabarqa. The third entry, Hantoub Bridge, was not a site of conflict but a poss
ible future objective, and should not have been extracted. In another example, the 
article stated: ‘On Thursday, May 16, a health center in Um Rawaba was attacked by 
assailants who plundered medical equipment and medications, according to reports 

Table 5. Few-shot prompting performance.
Model Temp Context Limit Maximum Token Runtime Precision Recall F1 Score

Gemma2 - 27b 1 8192 −1 5 m 59s 79.4% 78.4% 78.8%
0.5 8192 −1 5 m 10s 79.2% 77.9% 78.4%
0.1 8192 −1 4 m 58s 79.6% 78.9% 79.1%
0 8192 −1 5 m 5s 80.2% 80.0% 80.0%

Gemma2 - 9b 1 8192 −1 3 m 28s 77.6% 77.5% 77.0%
0.5 8192 −1 3 m 30s 77.9% 78.1% 79.9%
0.1 8192 −1 3 m 30s 78.3% 78.2% 78.1%
0 8192 −1 3 m 41s 78.6% 78.3% 78.4%

Llama 3.1 - 70 b 1 8192 −1 9 m 27s 54.5% 59.5% 54.1%
0.5 8192 −1 9 m 35s 55.1% 49.5% 52.5%
0.1 8192 −1 9 m 51s 44.2% 43.3% 43.6%
0 8192 −1 9 m 39s 43.9% 43.1% 43.4%

Llama 3.1 −7b 1 8192 −1 1 m 58s 44.8% 45.6% 44.3%
0.5 8192 −1 2 m 2s 45.1% 44.6% 44.6%
0.1 8192 −1 2 m 3s 45.9% 45.5% 45.1%
0 8192 −1 2 m 9s 46.1% 45.7% 45.9%

Qwen – 7b 1 8192 −1 1 m 47s 78.8% 77.1% 77.8%
0.5 8192 −1 1 m 51s 78.3% 76.5% 77.3%
0.1 8192 −1 1 m 45s 79.1% 77.9% 78.5%
0 8192 −1 1 m 49s 79.1% 78.2% 78.1%

Mistral – 7b 1 8192 −1 2 m 40s 64.4% 63.6% 63.0%
0.5 8192 −1 2 m 50s 66.2% 64.4% 65.4%
0.1 8192 −1 2 m 31s 69.1% 68.2% 68.5%
0 8192 −1 2 m 50s 69.4% 68.6% 68.9%
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by local residents.’ Gemma2-27b returned: Um Rawaba, North Kordofan, Sudan, 5/16/ 
2024, whereas Gemma2-9b, in contrast, returned: Um Rawaba, Sudan, 5/16/2024. 
Although the article did not mention the state, only the larger model (27b) appended 
‘North Kordofan,’ which is factually correct. This highlights the difference in capability 
between model sizes, with larger models better able to complete missing administra
tive context. Finally, an example of hallucination was observed in the following 
article: ‘Sudan War Monitor reported on May 21 that the SAF have been targeting 
both foreigners and citizens in Gedaref State, especially Ethiopians, arresting at least 
16 Ethiopian refugees, according to local sources.’ The model output was: Gedaref 
State, Sudan, Ethiopia, 5/21/2024. Here, ‘Ethiopia’ was incorrectly included as a 
location, even though it was not a site of any incident. The article only referenced 
Ethiopian refugees living in Sudan. This type of error illustrates how few-shot prompt
ing can over-extract any mentioned location in the article, even when it is not contex
tually relevant. Furthermore, a key limitation was the often inclusion of all mentioned 
locations, even when some were merely contextual references rather than actual sites 
of incidents.

5.5. Chain-of-thought prompting

Table 6 presents the overall performance of various LLMs on location extraction using 
CoT prompting. Gemma2-9b achieved the highest F1 score, outperforming both 
smaller and larger models. CoT prompting improved interpretability by requiring 
models to justify their outputs, often leading to more accurate administrative completion. 
However, it also introduced errors when outputs failed to align with the model’s own 
reasoning.

For instance, in response to the following article: 

‘On Sunday, May 5th, Sudanese warplanes conducted airstrikes targeting agricultural fields 
where RSF elements are reported located, near Shabarqa, a critical RSF stronghold … ’,

the model reasoned that the event occurred near Shabarqa but still extracted the location 
as:

Shabarqa, El Gezira, Sudan, 5/5/2024.

This reflects a mismatch between the model’s internal reasoning and its final output. 
Although the spatial detail was preserved in the explanation, it was lost in the formatted 
response, which is an example of how CoT prompting may improve reasoning but still 
yield factually imprecise extractions.

A more severe issue was observed in a May 22 article describing violence in the ‘north
ern and eastern parts of the city’ and the Abu Shouk IDP Camp. Although the article 
never named the city, the model hallucinated ‘El Geneina’ as the location. In reality, 
Abu Shouk Camp is located in El Fasher, North Darfur, making this a factual inaccuracy. 
These examples highlight CoT’s tendency to overcomplete missing information based on 
prior knowledge, leading to hallucinated outputs that do not align with the source text.

5.6. Retrieval augmented generation

Based on the experiments in Sections 5.2–5.5, which evaluated zero-shot, few-shot, 
instruction-based, and CoT prompting strategies, we compared their effectiveness 
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across multiple open-source LLMs. On the Gemma2–27B model, zero-shot prompting 
achieved F1 scores between 87.2% and 88.3%, outperforming CoT by 3.8% to 4.2% 
(CoT: 83.4%–84.1%). On the Gemma2–9B model, CoT slightly outperformed zero- 
shot, with scores ranging from 87.7% to 88.9%, compared to 86.7% to 87.2% from 
zero-shot, a difference of 1.0% to 1.7%. Although CoT showed a marginal advantage 
on the smaller model, zero-shot prompting demonstrated greater consistency across 
both Gemma2 models, with lower performance variation and reduced sensitivity to 
prompt structure. In contrast, CoT was more prone to output instability.

In addition, although the previous results show that zero-shot prompting offers more 
consistent performance, we still conducted experiments combining CoT with RAG on 
Gemma2-9b using a temperature of 0. We found that while the model occasionally pro
duced correct and well-reasoned outputs, this integrative approach suffered from two key 
issues; 1) significantly increased inference time and 2) inconsistent final predictions. Fur
thermore, in several cases, the correct location was mentioned in the reasoning tokens 
but not reflected in the final output. These limitations made the CoT-RAG combination 
less reliable and not as efficient for further use cases. Given that Gemma2 models con
sistently outperformed other LLMs tested (e.g. LLaMA3, Qwen, Mistral), and that our 
experiments demonstrated zero-shot prompting to be the most stable and reproducible 
performance – compared to few-shot, instruction-based, and CoT promptings – we 
selected zero-shot prompting as the base prompt-tuning strategy for implementing RAG.

Table 7 presents the overall performance of various LLMs on location extraction using 
RAG. Gemma2-9b still achieved the highest F1 scores, with its best performance remain
ing at a temperature of 0. The use of RAG significantly improved performance on the 
Gemma2, Qwen, and Mistral models, with Mistral seeing an approximate 30% increase 
in accuracy. However, a decrease in performance was observed on the Llama model. One 

Table 6. Chain-of-Thought prompting performance.
Model Temp Context Limit Maximum Token Runtime Precision Recall F1 Score

Gemma2 - 27b 1 8192 −1 7 m 32s 84.7% 83.6% 84.1%
0.5 8192 −1 7 m 23s 84.8% 83.2% 83.9%
0.1 8192 −1 7 m 38s 84.9% 82.1% 83.4%
0 8192 −1 7 m 33s 84.9% 82.3% 83.5%

Gemma2 - 9b 1 8192 −1 5 m 3s 87.9% 87.5% 87.7%
0.5 8192 −1 5 m 13s 88.2% 88.1% 87.9%
0.1 8192 −1 5 m 2s 88.8% 88.1% 88.5%
0 8192 −1 5 m 4s 89.5% 88.4% 88.9%

Llama 3.1 - 70 b 1 8192 −1 16 m 19s 84.5% 82.7% 83.2%
0.5 8192 −1 14 m 42s 85.9% 83.1% 84.4%
0.1 8192 −1 15 m 6s 88.2% 84.8% 86.1%
0 8192 −1 15 m 20s 89.4% 85.0% 86.9%

Llama 3.1 −7b 1 8192 −1 3 m 50s 76.3% 71.1% 73.3%
0.5 8192 −1 3 m 43s 79.6% 77.8% 78.5%
0.1 8192 −1 3 m 51s 84.1% 81.5% 81.9%
0 8192 −1 3 m 50s 85.2% 82.2% 83.5%

Qwen – 7b 1 8192 −1 3 m 18s 78.6% 78.3% 78.4%
0.5 8192 −1 3 m 18s 80.6% 78.2% 78.9%.
0.1 8192 −1 3 m 19s 82.3% 80.5% 81.2%
0 8192 −1 3 m 15 83.1% 81.8% 82.4%

Mistral – 7b 1 8192 −1 4 m 9s 76.6% 73.2% 74.6%
0.5 8192 −1 3 m 45s 75.4% 73.4% 74.7%
0.1 8192 −1 4 m 1s 78.1% 74.9% 77.9%
0 8192 −1 4 m 13s 79.1% 75.2% 78.4%
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of the key strengths of RAG observed in this study was its ability to handle complex 
queries involving multiple locations within the same paragraph, an area where other 
models often struggled. For example, when given the same dataset, RAG was able to 
identify multiple specific locations, such as villages and neighborhoods, in contrast to 
zero-shot and instruction-based prompting, which often only extracted a single location. 
Here is an example: ‘Despite calls for the cessation of hostilities, the RSF has intensified 
these last three days its offensive against El Fasher, North Darfur, which has led to an esca
lation of violent clashes  …  The most impacted areas have been the densely populated dis
tricts in the south and north of the city, such as Al-Inqaz, Al-Salam, Al-Wahda, Al-Hijra, 
Oulad Al-Reef, and Makraka, which were affected by artillery bombardment.’ Instruction- 
based prompting could only extract ‘El Fasher, North Darfur, Sudan’, whereas RAG accu
rately identified and extracted the locations as ‘Al-Inqaz, Al-Salam, Al-Wahda, Al-Hijra, 
Oulad Al-Reef, Makraka, El Fasher, North Darfur, Sudan, 03/14/2024’, significantly 
enhancing the accuracy of extracted information.

However, in some models like Llama3.1-70B, RAG did not consistently adhere to for
matting instructions. For instance, in a May 7 article, the model accurately extracted both 
the location and the date but failed to present them on the same line as prompted – 
placing the date on a new line instead. While the factual content was correct, the deviation 
from the expected structure suggests a limitation in formatting control, which may stem 
from the language model’s generation behavior rather than the retrieval process itself.

Furthermore, in a May 19 article, the Gemma2-9B RAG model failed to extract the full 
specific location, identifying only El Fasher rather than the name of the hospital where 
the incident occurred. Although such cases are less frequent compared to other prompt
ing methods, they nonetheless demonstrate that RAG does not fully eliminate extraction 
errors or formatting inconsistencies.

Table 7. Retrieval-Augmented Generation performance.
Model Temp Context Limit Maximum Token Runtime Precision Recall F1 Score

Gemma2 - 27b 1 8192 −1 7 m 6s 91.9% 90.1% 91.0%
0.5 8192 −1 7m 92.1% 91.0% 91.6%
0.1 8192 −1 7 m 5s 92.1% 90.7% 91.4%
0 8192 −1 7 m 7s 91.7% 89.6% 90.6%

Gemma2 - 9b 1 8192 −1 3 m 26s 89.6% 91.7% 90.6%
0.5 8192 −1 3 m 22s 89.8% 92.0% 90.9%
0.1 8192 −1 3 m 14s 90.1% 92.9% 91.5%
0 8192 −1 3 m 18s 90.1% 93.5% 91.8%

Llama 3.1 - 70 b 1 8192 −1 9 m 15s 82.3% 78.4% 80.3%
0.5 8192 −1 9 m 1s 85.2% 80.8% 82.9%
0.1 8192 −1 8 m 54s 85.1% 80.2% 82.6%
0 8192 −1 8 m 53s 84.9% 81.1% 83.0%

Llama 3.1 −7b 1 8192 −1 2 m 31s 68.6% 72.8% 70.6%
0.5 8192 −1 2 m 32s 68.9% 74.7% 71.7%
0.1 8192 −1 2 m 26s 69.3% 73.3% 71.2%
0 8192 −1 2 m 35s 69.1% 74.8% 71.8%

Qwen – 7b 1 8192 −1 2 m 36s 76.5% 78.7% 77.6%
0.5 8192 −1 2 m 32s 75.7% 79.7% 77.6%
0.1 8192 −1 2 m 36s 76.1% 79.1% 77.6%
0 8192 −1 2 m 37s 77.2% 76.5% 76.8%

Mistral – 7b 1 8192 −1 2 m 56s 81.5% 81.1% 81.3%
0.5 8192 −1 3 m 3s 81.1% 81.6% 81.3%
0.1 8192 −1 3 m 6s 80.5% 81.6% 81.0%
0 8192 −1 3 m 3s 79.7% 83.2% 81.4%
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6. Discussion

6.1. Prompting strategy comparison

To mitigate concerns regarding potential bias in the manual evaluation process, this 
section presents a direct, article-level comparison of outputs generated by each prompt
ing strategy when applied to the same input. To further enhance transparency and repro
ducibility, the original full-text articles used for these comparisons are included in 
Appendix A Text A1 and Text A2, corresponding to Appendix Tables A1 and A2 respect
ively. Two side-by-side comparisons are presented in Appendix A Tables A1 and A2. In 
both cases, the same LLM, Gemma2-9B, was used across all prompting strategies with a 
fixed temperature of 0, to ensure consistency and isolate prompting as the primary vari
able. This model was selected based on prior experiments demonstrating superior overall 
performance relative to other tested LLMs.

Table A1 compares outputs for the article in Text A1 describing a targeted airstrike. 
The RAG-based approach performed optimally in this case, correctly identifying the 
incident location as near Shabarqa and avoiding distractor references such as Wad 
Madani and Hantoub Bridge. In contrast, both the zero-shot and few-shot strategies 
failed to make this distinction, instead outputting a list of all locations mentioned in 
the article, including the non-incident locations. The instruction-based prompting 
method failed completely, yielding an invalid output that included extraneous 
phrases (e.g. ‘Let me know if you have any other news articles you’d like me to 
analyze’) and improper formatting (e.g. enclosing output in triple quotes, labeling it 
‘json’), which resulted in a score of zero. CoT prompting achieved partial success, iden
tifying ‘Shabarqa’ as the location; however, it omitted the critical qualifier ‘near,’ which 
led to a reduced F1 score.

Table A2 evaluates prompting strategies using the article in Text A2 that describes an 
attack on medical infrastructure. RAG achieved the highest score, correctly identifying 
both the specific location (a health center in Um Rawaba) and the state (North Kordo
fan), even though the article did not explicitly mention the state. Notably, RAG was 
the only strategy to identify both components successfully. Few-shot, zero-shot, and 
instruction-based prompting all failed to recover the state and additionally omitted the 
specific incident location, outputting only ‘Um Rawaba.’ CoT produced the least accurate 
response, hallucinating the state as North Darfur and failing to identify the specific facil
ity targeted, resulting in the lowest score among the strategies.

Collectively, these case studies reinforce the conclusion that RAG prompting yields 
more precise and contextually grounded location extraction, even in scenarios where 
state or incident specificity is underspecified in the source text. Moreover, the results 
highlight that differences across prompting strategies are not solely a matter of comple
teness but also concern the quality and faithfulness of the extracted locations.

6.2. Overall observations

Using the Sudan conflict as a use case, this paper systematically evaluates the accuracy 
and speed of using various LLMs, relevant tuning methods as well as integrating RAG 
for context-based location extraction. As Figure 3 shows, the implementation of RAG 
significantly improved the overall F1 score across all models and parameters, 
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outperforming the standard NER, zero-shot, and instruction-based methods by margins 
of 5% to 30%, depending on model selection and prompt configuration. In most 
cases, lower temperature settings, such as 0 and 0.1, produced higher F1 scores for 
context-based location extraction. This result aligns with the expectation that extracting 
factual information from LLMs benefits from more deterministic outputs rather than 
creative generation. Conversely, higher temperatures often led to the generation of 
unnecessary information, such as reasoning or explanations, which negatively impacted 
the score.

Among the LLM models tested, Gemma2-29B demonstrated the best overall perform
ance, achieving an F1 score of up to 91.8% with a temperature setting of 0 when using 
RAG as highlighted in Table 5. This performance can be attributed to Gemma2’s distinc
tive model architecture (Purves et al. 2018), which incorporates Local Sliding Window 
and Global Attention in alternating layers (Beltagy, Peters, and Cohan 2020; Team 
et al. 2024), as well as Logit Soft-Capping in each attention layer and the final layer 
within its decoder-only transformer design (Luong et al. 2015). The Local Sliding 
Window mechanism segments text into overlapping windows, allowing the model to 
concentrate on local context within each segment. This segmentation reduces compu
tational costs while retaining detailed local insights (Team et al. 2024). Meanwhile, 
Global Attention augments the model’s context-handling by periodically focusing on sig
nificant global tokens across segments, thus capturing broader contextual relationships 
that span the input (Beltagy, Peters, and Cohan 2020). Additionally, Logit Soft- 
Capping stabilizes model output by capping raw logit scores, preventing them from 

Figure 3. Overall Performance of Context-based Location Extraction.
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becoming excessively large. This technique reduces numerical instability, promotes 
balanced output distributions, and mitigates overconfidence in certain predictions. 
Such balanced probability distributions are especially advantageous for tasks that 
require nuanced, varied responses across potential outputs (Luong et al. 2015).

Another finding is that larger models, which typically require longer runtimes, do not 
necessarily improve accuracy, highlighting the importance of balancing model size with 
efficiency in context-based location extraction tasks. This is evident in Table 7, where 
Gemma2 – 7b achieved results identical to Gemma2 – 27b while maintaining a 
runtime that was twice as fast as the larger model. Furthermore, Table 4 shows similar 
findings, with Llama3.1 - 7b and Llama3.1 - 70b, achieving comparable results across 
all hyperparameters, and showcasing how larger models do not necessarily equate to 
higher performance scores.

To support these evaluations, all experiments were conducted on a high-performance 
workstation equipped with an Intel(R) Xeon(R) w3-2423 CPU, 128 GB of RAM, and dual 
NVIDIA RTX A6000 GPUs (each with 48 GB of VRAM). This configuration enabled 
smooth and efficient execution of large-scale language models such as Gemma2–27B 
and Llama3.1–70B, particularly within RAG pipelines that utilized extended context 
lengths and batch processing. The A6000 setup offered substantial acceleration and 
served as the benchmark for runtime comparisons.

To assess deployment feasibility under more accessible hardware conditions, we also 
tested inference on an RTX 4060 system with 8 GB of VRAM and 48 GB of RAM. While 
capable of running large models, the 4060 required significantly longer runtimes. For 
instance, Llama3.1–70B inference took approximately one hour for a single long- 
context prompt. We further tested another machine with the following system 
configurations: GTX 1070 Ti with 8 GB VRAM and 16 GB RAM, which was only 
able to run smaller models under constrained batch sizes and reduced context 
lengths, confirming the limited practicality of older GPUs for large-batch tasks with 
larger sized LLMs. Based on our findings, we recommend a minimum of 24 GB 
VRAM and 64 GB RAM for effective use of models in the 13–30B parameter range 
when using RAG or long-context queries. For smaller models (e.g. 7B), GPUs with 8 
GB VRAM and at least 16 GB RAM can suffice, though with trade-offs in speed and 
context size (Wang et al. 2023).

Furthermore, different parameter settings for context limit and maximum tokens were 
tested but found that they did not significantly affect overall performance of context- 
based location extraction tasks unless they were set to extreme values. This is primarily 
because context limit determines the maximum amount of input text the model can 
process at one time, while the maximum tokens set a limit on the total number of 
tokens that the LLM can generate in a sequence. In other words, the context limit 
affects the length of the input, and maximum tokens control the length of the output. 
However, in this research, the inputs were of fixed length, and the required outputs 
were relatively short, as the task did not require complex reasoning. The only scenario 
where these parameters made a noticeable difference was when the maximum tokens 
were set to extremely low values, preventing the model from fully outputting a location 
name. This would negatively impact the performance of all models. However, such an 
extreme setting was deemed irrelevant, as it would prevent any meaningful extraction. 
Therefore, for this study, the context limit was set to a fixed value of 8192 (the 
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maximum context length for most LLMs) and maximum tokens to – 1 (allowing the 
model to output as many tokens as needed).

6.3. Future work

This study’s findings can be applied to other areas of research that require automatic 
location and information extraction, such as automated map generation through 
LLMs based on text input, including disaster monitoring, urban planning, and environ
mental science.

Although our current study implemented standard RAG techniques, we have also 
conducted initial experiments using Neo4j to store extracted location and date infor
mation from conflict incidents. While GraphRAG – an emerging approach that uses 
LLMs to build knowledge graphs from retrieved context – was explored (Edge et al. 
2024; Peng et al. 2024), we found that the accurate extraction of location and date 
must occur prior to meaningful graph construction. In our setup, once structured data 
was stored in Neo4j, we could query the database using GraphRAG to answer spatiotem
poral questions with minimal hallucination. For instance, when asked the question, 
‘What humanitarian crisis did RSF cause between May 10th and May 20th in Khartoum?’ 
the system responded: 

‘The provided documents do not contain information about any humanitarian crisis caused 
by the RSF in Khartoum between May 10th and May 20th.

They focus on incidents in other locations:

. West Kordofan: Attacks on a religious leader’s home and a local resistance movement 
in Gbeish (May 14th).

. North Darfur: Clashes between RSF and Sudanese Army in El Fasher, including 
attacks on the Abu Shouk IDP camp (May 16th – 22nd).There is no mention of Khar
toum in these reports.’

In this example, we intentionally posed a misleading question to test the hallucination 
tendency of the LLM, as no events actually occurred in Khartoum during the specified 
time frame. The result shows how a structured spatiotemporal knowledge base can 
produce precise, document-grounded answers. The system correctly identified that 
no relevant events occurred in Khartoum during the specified period – without hal
lucinating a false response. This highlights the value of post-extraction knowledge 
graphs like Neo4j in enabling reliable downstream reasoning. Future work will 
focus on refining this GraphRAG-enhanced pipeline to support domain-specific 
expert systems.

Integrating agent-based frameworks, such as those offered by LangChain, presents a 
promising path for enhancing automation and decision-making in geospatial data 
workflows. These frameworks enable large language models (LLMs) to dynamically 
invoke tools like GIS APIs, vector databases, and code interpreters based on task- 
specific needs. Recent studies have demonstrated the potential of LLM-powered 
agents in geospatial contexts: (Ning et al. 2025) proposed an autonomous GIS agent 
framework that uses LLMs to generate, execute, and debug code for retrieving 
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complex geospatial datasets, while (Li et al. 2025) outlined a broader research agenda 
advocating for autonomous GIS that leverages generative AI for spatial analysis, knowl
edge graph construction, and automated map creation. However, most studies rely on 
closed-source LLMs such as GPT-4o, which raise concerns about deployment cost, 
dependency on commercial APIs, and data privacy. Many GIS applications involve sen
sitive or proprietary data – such as disaster response, military planning, or urban infra
structure – that cannot be shared with external services due to security, regulatory, or 
ethical constraints. These limitations make cloud-hosted, commercial LLMs unsuitable 
for many real-world GIS scenarios. In contrast, our work explores workflows leveraging 
open-source LLMs that can potentially be integrated into agentic frameworks, offering a 
path toward on-premises deployment that ensures both cost efficiency and data control. 
This direction could lower the barrier to adoption for research institutions and govern
ment agencies seeking to build secure, autonomous GIS systems tailored to their 
domains.

While this study focuses on conflict-related news articles, the proposed extraction 
framework has broader applications in domains such as disaster monitoring and 
environmental science – where timely and accurate geospatial information is critical. 
For example, in disaster monitoring, the framework could be used to extract affected 
locations and event timelines from real-time news and social media feeds during 
natural disasters such as floods, wildfires, earthquakes, or pandemic, enabling rapid 
response and resource allocation (Chen et al. 2022; Wang et al. 2022; Yu et al. 2019). 
In environmental science, the method could assist in tracking environmental incidents 
such as pollution events, deforestation, or biodiversity loss by automatically extracting 
spatial and temporal references from reports, studies, and field notes (Liu et al. 2021; 
Malarvizhi et al. 2023). The framework can also be adapted for multi-language inputs 
to support global use cases and integrated with open-source GIS tools like QGIS for 
spatial visualization and analysis. Additionally, incorporating the framework into low- 
code platforms such as KNIME would enhance usability for non-programmers (Fu 
et al. 2025; Liu et al. 2024). By combining LLM-based extraction with KNIME’s visual 
workflow environment, users could automate data collection, processing, and geospatial 
integration in a reproducible and modular way. This would facilitate practical deploy
ment across government, research, and humanitarian settings where flexible and inter
pretable pipelines are essential.

7. Conclusion

This study explored the limitations of traditional NER methods in context-based 
location extraction, particularly in handling complex descriptors and relationships in 
spatiotemporal data. The evaluation of LLMs demonstrated that standard prompt- 
tuning methods struggled to deliver accurate results when multiple locations and 
dates were required in a structured format. To address these challenges, RAG was inte
grated to improve context-based location extraction performance from news articles 
about the Sudan conflict.

The research also compared the performance of different open-source LLMs in terms 
of runtime and accuracy, while examining the impact of hyperparameters on context- 
based location extraction tasks. Although RAG-based tuning did not consistently 
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outperform zero-shot and instruction-based prompting across all models, it delivered the 
highest F1 scores in Gemma2 and significantly improved performance in most of the 
open-source models tested.

This work opens several promising directions for building flexible, domain-adapt
able geospatial systems. Integrating GraphRAG and Neo4j offers potential for con
structing structured spatiotemporal knowledge bases to support accurate, context- 
aware reasoning. The use of open-source LLMs also presents a cost-effective and 
privacy-preserving alternative to closed-source models, particularly for applications 
requiring local deployment. Furthermore, incorporating the framework into platforms 
like KNIME and QGIS could enable low-code, end-to-end solutions for disaster moni
toring and environmental science – laying the groundwork for future autonomous GIS 
systems.
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